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AFIT/GAE/ENY/10-M26 

 
                                                                  Abstract 
 
 
 Past research has indicated that implementation of a pulsed detonation combustor 

(PDC) into a high-bypass turbofan engine yields a more efficient engine at design 

conditions. It is proposed that performance gains can be made utilizing this hybrid engine 

off-design. A hybrid high-bypass turbofan engine with a PDC model was evaluated for a 

range of Mach numbers, altitudes, and fill fractions in the Numerical Propulsion System 

Simulation (NPSS). Results were compared to a conventional baseline high-bypass 

turbofan engine that shares the same architecture with the hybrid. The NPSS baseline 

engine was validated using the Aircraft Engine Design System (AEDsys) program and 

the net thrust and specific fuel consumption agreed to within one percent. The effect of 

detonation on the core air flow is calculated using a closed form solution for the 

Chapman-Jouguet Mach number with a total energy correction applied. Results indicate 

that fill fraction can be adjusted to reduce the TSFC to that of the baseline engine and 

lower at some thrust levels. With careful selection of design parameters, results suggest a 

pulsed detonation combustor may be an appropriate candidate for inclusion in a hybrid 

turbofan engine.
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OFF-DESIGN ANAYSIS OF A HIGH BYPASS TURBOFAN USING A PULSED 

DETONATION COMBUSTOR 

 
I.  Introduction 

 

Since the early 1940’s, pulsed detonation engines (PDE) have been studied as a 

means of increasing burn efficiency in an engine as a result of its supersonic detonative 

mode of combustion over conventional subsonic deflagration. Detonations provide a 

much more efficient means of combusting a fuel-oxidizer mixture due to increased 

thermodynamic efficiency as a result of the pressure-rise associated with detonation. 

Additionally, with its potential for a cycle time of more than ten times that of a traditional 

pulsejet engine and fewer moving parts to maintain, PDEs hold the promise for 

applications across the flight envelope spanning subsonic, supersonic and hypersonic 

flight. 

More advanced concepts such as a hybrid-PDE have been studied in which a 

pulsed detonation combustor (PDC) is incorporated into a gas turbine engine as the 

primary combustion system with the intention of increasing efficiency by utilizing the 

strengths of both engines. In this type of system the exhaust from the detonation chamber 

drives the downstream turbine which provides power to the compressor, which, in turn, 

provides the air flow to fill and purge the detonation chamber. Although a novel idea, the 

hybrid system is not without its challenges. Low-vapor pressure hydrocarbon fuels must 

be used efficiently as key PDE cycle parameters such as ignition time and deflagration to 
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detonation time depend on the properties of the fuel. Noise is also a substantial issue as 

detonations are significantly louder than deflagration combustion. The periodic, high-

pressure pulses must be assessed on turbine performance and the life of the engine. The 

first flight of an aircraft powered by a PDE took place on January 31, 2008 operating 

under its own power for 10 seconds at an altitude of approximately 100 feet. With this 

demonstration proving that a PDE can be integrated into an aircraft frame without 

experiencing structural problems, PDEs are increasingly recognized as a realizable 

technology for future aerospace propulsion. 

 

Purpose 

 A substantial amount of work on PDEs and hybrid PDEs has been accomplished, 

with significant developments being made in the last fifteen years. The theoretical 

analysis of Petters and Felding (Petters and Felding, 2002:6) indicated that a PDE-hybrid 

with the same inlet airflow as a baseline turbofan engine produced a 2% higher thrust and 

an 11% reduction in thrust specific fuel consumption (TSFC). Similar studies by Andrus 

(Andrus, 2007:81) showed that an optimal hybrid engine operating at design conditions 

could yield an 8% decrease in TSFC while maintaining thrust. 

The experimental work of Schauer et al. (Schauer et al., 2003), Deng et al. (Deng 

et al., 2008), and Rasheed et al. (Rasheed et al., 2005) all investigated a detonation driven 

turbine at design conditions; however, the only experimental work done on PDEs at off-

design conditions to date is that of Glaser et al. (Glaser et al., 2004). Glaser’s work 
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suggests performance gains can be made by varying key parameters such as equivalence 

ratio and fill fraction. The objective of this thesis is to build on Andrus’s (Andrus, 2007) 

work by performing a simulated off-design analysis of a hybrid-PDE design to evaluate 

the effects on thrust and TSFC. 

 

Procedure 

 The procedure for performing the off-design analysis closely mirrors the steps 

used by Andrus in performing his comparative analysis of a high bypass turbofan using a 

pulsed detonation combustor with a conventional baseline turbofan. A baseline high-

bypass turbofan is modeled in both the Numerical Propulsion System Simulation (NPSS) 

and in the Aircraft Engine Design system (AEDsys) programs. The comparison is made 

to ensure identical engine configuration between the two programs. The NPSS program is 

the primary software program used in this thesis to evaluate the off-design performance 

of a hybrid-PDE. It was developed via a cooperative effort between industry and NASA 

to predict and analyze the aerothermodynamic behavior of commercial jet aircraft, 

military applications, and space transportation with the goal of reducing development 

time and cost of a new engine by half. AEDsys was developed by Mattingly (Mattingly et 

al., 2006) for educational use in the field of gas turbine engine design and allows the user 

to perform design point and parametric cycle analysis for various engines. 

 After validating the accuracy of the baseline engine in both AEDsys and NPSS, a 

hybrid-PDE model with the identical configuration as the baseline engine, with the 



 

4 

 

exception of a pulsed detonation combustor replacing the conventional combustor, is 

developed in NPSS and run at off-design conditions. An analysis of the hybrid engine 

performance is evaluated for a range of Mach numbers, altitudes, and fill fractions. The 

effects on thrust and TFSC are compared to that of the NPSS baseline engine running at 

the same off-design conditions.  

 

Significance of Research 

Much research has been done on turbofan engines with a pulsed detonation 

combustor at design conditions, but there is a very limited amount of literature on the 

performance of these engines off-design. Because the majority of an engine’s operation 

are at off-design conditions, significant cost savings could be realized if hybrid turbofan 

engines are more efficient than conventional engines. In addition, a hybrid engine may be 

cheaper to build and less expensive to maintain than a conventional engine, offering 

additional long term savings. 

 

Organization 

 This thesis compares the performance of a hybrid-PDE to that of a conventional 

turbofan using the NPSS program. Chapter two contains a thorough discussion of pulsed 

detonation thermodynamics as well as prior work on PDEs. Chapter three describes the 

baseline turbofan model used in AEDsys and NPSS, as well as the hybrid-PDE engine 

and its combustor section. Chapter four is a comprehensive analysis of the hybrid-PDE 
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performance as compared to that of the conventional baseline engine. Chapter five 

contains the conclusions of this research as well as recommendations for future work. 
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II. Literature Review 

 

 Introduction 

 This section presents a thorough discussion of the underlying thermodynamics of 

the hybrid-PDE engine as the results of this thesis are essentially governed by the basic 

models of detonation to include the Chapman-Jouguet and Zeldovich-von Nuemann-

Doring (ZND) theories. 

 The Chapman-Jouguet theory allows for the calculation of the detonation velocity 

of a detonation wave with known pressures and densities of the unburned gases for a 

given q. The steady state solution of the detonation wave requires knowledge of the 

equilibrium thermodynamic calculations. Experimental results have shown to agree well 

with the detonation velocities resulting from this theory. 

 Zeldovich, von Nuemann, and Doring (Kuo, 1986) present a model for detonation 

wave structure in which parameters such as detonation limits, initiation energy, tube 

diameter, etc. are known. Unlike the Chapman-Jouguet theory, experimental 

measurements do not agree with the model calculations, mainly because the ZND 

structure is unstable and only observed experimentally under transient conditions. 

Experimental observations show that the self-sustained detonations have a three-

dimensional cell structure; however, there are currently no acceptable theories that define 

this cell structure. 
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Combustion Waves 

 In order to understand how a pulsed detonation combustor can be more efficient 

than a conventional combustor, it is first necessary to understand the differences between 

the detonations and deflagrations of the two burners that produce engine thrust. A 

detonation is a supersonic shock wave that propagates through a fluid due to an energy 

release in a reaction zone. A deflagration is a wave that propagates at a subsonic rate by 

heat transfer. Detonations generate higher pressures and have increased wave speeds, 

thus producing greater thrust than deflagrations. Figure 2.1 shows a schematic of a 

stationary one-dimensional combustion wave in which subscript one and two denote 

conditions of the unburned gases ahead of the wave and burned gases behind the wave, 

respectively. Deflagration and detonation wave properties are compared in Table 2.1. 

 

 

 

Figure 2.1 Stationary one-dimensional combustion wave (Kuo, 1986:233) 
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Table 2.1. Qualitative differences between detonation and deflagration in gases 
(Kuo, 1986:234) 

 

 A combustion wave is formed in a tube when a combustible gas mixture is ignited 

at the closed end of a tube.  The properties in Table 2.1 show that the burned gases are 

higher in temperature and density than the unburned gases. This increase in density 

initiates a compression wave that travels towards the deflagration wave front, causing the 

wave to accelerate. Density increases as the deflagration wave continues, causing more 

and more compression waves to form. The waves accelerate as pressure and density 

increase, thus causing them to amalgamate at the deflagration wave front. If the tube is 

sufficiently long, a shock wave will form that is strong enough to ignite the mixture 

ahead of the wave front. A detonation is obtained as the continuous compression waves 

in the reaction zone keep the shock from decaying. The detonation is inherently self-

sustaining in that the detonation front initiates a chemical reaction by compression by 

diffusing heat. 

 

Chapman-Jouguet Theory 

 To solve for the Hugoniot curve on which the Chapman-Jouguet points are found, 

we must first start with the conservation equations (Glassman, 1996:226): 
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                                                          1 1 2 2u uρ ρ=                               (2.1) 

    2 2
1 1 1 2 2 2p u p uρ ρ+ = +                               (2.2)   

                                            2 2
1 1 2 2

1 1

2 2p pu uc T q c T+ + = +                                                (2.3) 

 1 1 1

2 2 2

p RT
p RT

ρ
ρ

=
=

  (2.4)      

where Eqs. 2.1, 2.2, and 2.3 are the mass, momentum, and energy respectively. Equation 

2.4 is simply the equation of state. The four equations can be reduced to one equation 

with two unknowns, p2 and ρ2, by combining Eqs. 2.1 and 2.2 to yield (Kuo, 1986:236): 

           (2.5) 

or in terms of Mach number: 

 

2

2 1
1

1

2

1

1

p
pMγ ρ

ρ

−
=

−
  

 (2.6) 

where Eqs. 2.5 and 2.6 are known as the Raleigh-line relation. 

 The Hugoniot relation can be found by combining Eqs. 2.1 - 2.4 to yield 

(Glassman, 1996:228): 

 ( )2 1
2 1

2 1 1 2

1 1 1
1 2

p p p p qγ
γ ρ ρ ρ ρ

   
− − − − =   −    

 (2.7) 
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where q is the heat flux. The Hugoniot curve as shown in Fig. 2.2 is a plot of the specific 

volume (1/ρ) and pressure of the burned gases for given values of heat flux, specific 

volume and pressure of the unburned gases. 

 

Figure 2.2 Hugoniot curve with Rayleigh lines (Kuo, 1986:238) 

 

 The plot is broken up into five regions constructed by drawing tangents and 

vertical and horizontal lines from the origin (1/ρ1,p1) to the curve. The two Chapman-

Jouguet points are at the tangents to the curve and are referred to as the upper and lower 

C-J points at the upper and lower Raleigh lines, respectively. Of the five regions, only 

regions I, II, and III are physically possible. Region V does not bound a valid solution as 

p2 and 1/ρ2 are greater than p1 and 1/ρ1 and thus would require a compression wave to 

move in the negative direction. Region IV is also ruled out as the heat addition stipulates 

supersonic flow; however, it is not possible to have heat addition and advance past the 

sonic condition in a constant area duct. Regions I and II are the detonation regions of the 
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curve and represent strong and weak detonations, respectively. These regions are 

eliminated due to the structure of the detonation wave discussed in the next section. 

Region III is the weak deflagration region and is often observed in most experimental 

conditions; however, since deflagration is not of interest in this thesis, region III is 

irrelevant to this work as well. The upper C-J point is of importance to this research in 

that the wave speed at this point corresponds to a minimum detonation wave speed and 

implies that the Mach number of the burned gases must be equal to one. The method used 

in this work to calculate the velocity of the wave at this point will be discussed later in 

this chapter. 

 

Zeldovich-von Nuemann-Doring Theory 

 The Zeldovich-von Nuemann-Doring (ZND) model is a one-dimensional model 

of the structure of a detonation wave. The model assumes a one-dimensional, steady flow 

with limited reactions in the shock wave region. As shown in Fig. 2.3 the detonation 

wave consists of a thin shock wave region followed by a thick deflagration region 

consisting of an induction and reaction zone. The reactants are initially heated by the 

shock wave to a temperature which ensures a high enough reaction rate in which the 

deflagration can propagate at the same speed as the shock wave. The thin shock layer 

results in a sharp spike in temperature, pressure, and density. The peak pressure reached 

in this region is referred to as the von Neumann spike. This is followed by relatively 

steady profiles through the induction zone due to a slowly increasing rate of reaction 

immediately behind the shock front.  
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Figure 2.3 Thermodynamic property variations across a ZND detonation wave 
(Kuo, 1986:261) 
 
The properties change drastically again as reaction rate increases and then reach their 

equilibrium values once the reaction has completed. The ZND detonation structure may 

also be shown on Fig. 2.4 beginning at the Hugoniot origin and moving up along the left 

of the curve until it reaches the von Neumann spike. At this point the pressure decreases 

and the path merges with the Hugoniot curve to the upper C-J point. 

 Although these models assume a detonation to be one-dimensional, it should be 

acknowledged that detonation waves moving in tubes are actually three-dimensional and 

nonsteady in nature in which the flow proceeds in a cyclic manner with shock velocity 

fluctuations about the equilibrium C-J value.  
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Figure 2.4 Detonation structure (Williams, 1985:193) 

 

Thermodynamic Cycle Analysis 

 The pulsed detonation engine thermodynamic cycle is described by Heiser and 

Pratt (Heiser and Pratt, 2002:2) as being identical to that of an ideal Humphrey cycle used 

in turbojets and ramjets with the exception of heat addition during the combustion 

process. The ideal Humphrey cycle is sometimes used to estimate the thermal efficiency 

of the PDE cycle as it replaces the Brayton cycle’s constant-pressure heat addition 

process with a constant-volume heat addition process. The T-s diagram of these three 

processes is shown in Fig. 2.5.   
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Figure 2.5 Ideal PDE, Humphrey, and Brayton cycle temperature-entropy diagrams 
(Heiser, 2002:4) 
 

The thermal efficiency of the PDE cycle is slightly greater than that of the 

Humphrey cycle and much greater than that of the Brayton cycle. The thermal efficiency 

of the PDE cycle as proposed by Heiser is identical to that of the Fickett-Jacobs cycle as 

described by Wintenberger (Wintenberger and Sheperd, 2004:12) in which an upper limit 

is computed to be the amount of mechanical work in a cycle produced by an unsteady 

detonation process.  

In Fig. 2.5, from state 0 to 3, an isentropic, adiabatic compression takes place in 

all three cycles, raising the temperature to T3. It is the process from state 3 to 4 in which 

the PDE, Humphrey, and Brayton cycles differ. In the Brayton cycle, a constant pressure 

heat addition takes place and increases the temperature T3 of the combustor inlet to T4 at 

the combustor outlet. From state 3 to 4 in the PDE cycle, the ZND detonation wave is 
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seen in which the process is constrained by the Chapman-Jouguet condition, requiring the 

Mach number at state 4 to be sonic. The path from state 3 to 4 differs slightly from that of 

the Brayton and Humphrey cycles in that from state 3 to 3a the heat addition process 

generates entropy via the adiabatic normal shock wave, and from state 3a to 4 entropy is 

generated via a constant area heat addition process. The process from state 4 to 10 and 

state 10 to 0 of the three cycles are identical in that an isentropic expansion process takes 

place followed by a heat rejection to close the cycle.  

 The derivation for the solutions for the Chapman-Jouguet Mach number, the 

entropy difference from states 3 to 4, and cycle thermal efficiency are shown in Appendix 

A. They are given here by Eqs. 2.8, 2.9, and 2.10 respectively: 

                                                         (2.8)
 

                                    

1

24 3
2

1ln
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p CJ

s s M
c M

γ
γγ

γ

+ 
 − + = −   +                                              (2.9) 

                                                                      (2.10)

 

where                   
                                (2.11) 

and                                                      3 0/T Tψ =                                                    (2.12) 
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 The Chapman-Jouguet Mach number is calculated using the non-dimensional heat 

addition q  and ψ , the ratio of static temperature at state 3 to the free-stream static 

temperature at state 0. MCJ is then used to calculate the entropy rise from state 3 to 4 and 

the thermal efficiency of the cycle. According to Heiser and Pratt (Heiser and Pratt, 

2002), all the fluid properties at the detonation tube exit can be solved for using Eqs. 2.9 

and 2.13 to solve for the entropy and pressure at state 4. 
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The PDE thermodynamics as described by Heiser and Pratt is used in this thesis 

with the addition of a correction factor by Dyer and Kaemming (Dyer and Kaemming, 

2002:5). They note that using the pressure and entropy at the detonation tube exit to solve 

for all the properties of the fluid at this point is inaccurate because it ignores the eventual 

pressure loss that the gas will go through due to expansion waves. They propose using 

entropy and the change in enthalpy liberated by the combustion process to solve for the 

properties at the detonation tube exit. Available energy is calculated using the known CJ 

entropy originally calculated by Heiser and Pratt (Heiser and Pratt, 2002:3), Eq. 2.9, with 

the known system enthalpy of (h0+qadd), with qadd being the heat flux into the system, to 

ensure that energy is conserved. 

 

Pulsed Detonation Engine Cycle 

 A basic understanding of the PDE cycle is necessary to understand how the 

combustor section of the hybrid PDE performs in this research. The cycle consists of four 
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distinct processes: fill phase, detonation initiation, detonation wave propagation, and 

purge phase. The combustor is then recharged with another fuel/air mixture and the cycle 

repeats. 

 Figure 2.6 illustrates the various stages in a pulsed detonation engine cycle. At  

 

Figure 2.6 PDE cycle stages 

station one in the diagram, the detonation chamber is at ambient conditions. The fill 

phase is shown at station 2 as a valve that seals one end of the detonation chamber opens, 

permitting the fuel/air mixture into the chamber. The volume of the fuel/air mixture at 

ambient conditions to the tube volume is the fill fraction (ff). This is one of the variables 

analyzed in this research to determine engine performance over a range of values.  

 After the fuel/air mixture enters the chamber, the valve closes and a detonation 

wave is initiated near the closed end of the chamber as shown at station 3 of the figure. 

At the onset of this stage, a spark plug deposits a spark that causes a deflagration wave to 
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form at the end of the tube. The deflagration wave propagates through the tube and 

transitions to a detonation wave before reaching the open end of the tube. This transition 

is known as the deflagration to detonation transition (DDT), and the time elapsed 

between the formation of the deflagration wave and detonation wave is known as the 

DDT transition time. The detonation wave then propagates to the tube exit at the 

Chapman-Jouguet condition. As shown by station 4 in Fig. 2.6, the region ahead of the 

detonation wave contains the unburned gas at state one. The burned gas at state 2 just 

behind the wave is at a significantly higher pressure and temperature than state one; 

however, the burned gas at state 3 near the near the closed end of the chamber will have a 

lower temperature and pressure than the gas at state 2 with an intermediate condition 

existing between states 2 and 3.  

 Upon reaching the end of the tube, the detonation wave exits, producing the thrust 

of the engine. The purge phase begins as a pressure differential in the tube creates 

rarefaction waves which propagate into the tube and expel the burned gases. Pressure and 

temperature in the chamber eventually decay to ambient levels and the exhaust velocity 

goes to zero. The detonation tube can then be filled with a new fuel/air mixture to begin 

the cycle once again. 

 

Prior Work on Hybrid-Pulse Detonation Engines 

 A significant amount of research, both experimental and analytical, has been done 

on integrating a pulsed detonation combustor into a turbine system with the hopes of 

increasing thrust and decreasing fuel consumption of an aircraft engine. Petters and 
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Felder (Petters and Felder, 2002:4) and Andrus (Andrus, 2007:81) demonstrated that, in 

theory, a pulsed detonation hybrid engine can reduce TSFC by 8 to 10% at design 

conditions. GE Global Research (Rasheed et al., 2005) built and evaluated an eight tube 

PDC integrated with a single-stage axial turbine.  Results indicated the ability to produce 

detonations at 10 and 20 Hz conditions showing promise for operability over a wide 

range of conditions. Noise signatures and internal structural damage due to the cyclic 

pulsations of the detonations are a cause for concern in implementing a PDC into a 

turbine system. Caldwell and Gutmark (Caldwell and Gutmark, 2008:1) performed 

experimental studies to ascertain the flow field and suggest that shock reflection and 

blowdown jet interaction length and time scales could minimize noise and structural 

damage. During Schauer et al. (Schauer et al., 2003:1) testing of a PDE into a radial 

turbine, the turbine withstood all detonations into the inlet, as well as significantly 

weakened the strength of the detonation shocks in the exhaust nozzle. This experimental 

work (Rasheed et al., 2005) (Caldwell and Gutmark, 2008) (Schauer et al., 2003) among 

others prove that after overcoming a few hurdles, these engines can become a reality. 

 Though much work has been performed on hybrid-PDEs at design conditions, 

hardly any off-design analysis, either experimentally or analytically, has been 

accomplished. Off-design analysis determines the performance of an engine at a given set 

of conditions for a fixed geometry determined from a design operating point. Glaser et al. 

(Glaser et al., 2004:1) experimentally investigated the off-design performance of a pulsed 

detonation engine by varying the equivalence ratio and fill fraction parameters. Their 

PDE system utilized a single stainless steel PDE tube 1” in diameter and 24” in length. A 
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fuel/oxidizer mixture of ethylene and oxygen was injected into the tube via a controlled 

solenoid valve. A relationship between the wave speed and the equivalence ratio was 

found and is shown in Fig. 2.7. 

 

 
Figure 2.7 Relationship between equivalence ratio and detonation wave speed (Glaser et al., 2004:6) 

  

 

As can be seen from the plot, the wave speed increases with equivalence ratio 

before leveling out at a maximum equivalence ratio of 1.7 and wave speed of 2583 m/s. 

The effect of fill fraction on wave speed was also determined. These results can be seen 

in Fig. 2.8. 
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Figure 2.8 Relationship between fill fraction and detonation wave speed (Glaser et 
al., 2004:7) 
 
 
 Two different air/fuel ratios were investigated, with the two mixtures diverging at 

a fill fraction of approximately 0.6 before leveling off at a fill fraction of about 1.0. These 

results indicate that performance gains may be made at an equivalence ratio greater than 

one and a completely filled detonation tube. Although these tests were not performed on 

a hybrid-PDE, they indicate favorable results for pulsed detonation off-design studies, 

thus furthering the need for hybrid-PDE off-design research. 

 Chapter three will describe the baseline and hybrid-PDE models in AEDsys and 

NPSS and detail how the pulsed detonation thermodynamics are incorporated into the 

hybrid combustor section to solve for the hybrid engine performance. 
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III. Baseline and Hybrid Models 

 

Introduction 

 To ensure the accuracy of the baseline model in NPSS, it was compared to the 

same baseline model in AEDsys (Mattingly et al., 2002) at the design point. The baseline 

turbofan models were run in off-design mode in both the AEDsys and NPSS programs 

and the results compared. The hybrid turbofan model was developed and run off-design 

and its performance compared to that of the baseline model off-design. This chapter 

describes the baseline and hybrid models, including the changes made to the hybrid 

model to perform an off-design analysis. 

 

Baseline High Bypass Turbofan Engine in AEDsys and NPSS 

 The modeled engine is based on the parameters of the TF-39-GE-1C engine used 

on the C-5 Galaxy, as this engine has known operating parameters and is relevant to the 

Air Force. The component efficiencies were unknown, however, and were selected to 

correspond to a technology level projected ten to twenty years in the future. The 

efficiencies can be found in Mattingly’s Table 4.4 (Mattingly et al., 2002:107) under 

level 4 technology. Table 3.1 shows the parameters for the TF-39-GE-1C engine as 

compared with the notional baseline of the engine modeled. 
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Table 3.1 Parameters for baseline engine 

                 

Some of the baseline parameters are slightly different than those for the TF39-GE-1C 

engine and were chosen for simplicity. 

The baseline engine coded in NPSS utilizes the architecture of a high bypass split 

stream turbofan as described by Mattingly (Mattingly et al., 2002:569-587). The model 

reference stations and NPSS configuration are shown in Fig. 3.1.  

 

Figure 3.1 Baseline NPSS high bypass turbofan engine configuration with reference stations 
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In Fig. 3.1, the core and bypass flows split at the fan entry and two mixers are 

employed, one at the burner exit to combine the fluid exiting the burner with bleed flow 

(MIX40) and another at the high pressure turbine exit to combine the fluid exiting the 

turbine with bleed flow (MIX44). The bleeds are 5.0%, which is the default value in 

AEDsys. The model file that defines the baseline NPSS engine is found in Appendix B. 

 The engine was also modeled in AEDsys in order to compare results to the NPSS 

model and ensure its accuracy. Table 3.2 shows the input variables for the AEDsys 

baseline turbofan engine. 

Table 3.2 AEDsys baseline turbofan engine input parameters 
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 All parameters in Table 3.2 are also input into NPSS with the exception of the 

polytropic efficiencies. NPSS requires adiabatic efficiency inputs for turbines and 

compressors as compared to the AEDsys requirement for polytropic efficiency inputs. 

The two efficiencies are related by Eqs. 3.1 and 3.2 (Oates, 1997: 214 & 222): 
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These relationships are used to calculate the adiabatic efficiencies used in the baseline 

NPSS model listed in Table 3.3.  

Table 3.3 Baseline model NPSS adiabatic efficiency inputs 

 

The other difference between the AEDsys and NPSS programs is the 

thermodynamic model. The AEDsys thermodynamic package is a subroutine termed 

FAIR. FAIR is an 8th order polynomial fit to JANAF specific heat data for pure air, and 

CEA data for vitiated air (Mattingly et al., 2002: 89-91).  NPSS however, gives the user 

control over the thermodynamic quantities by offering a choice of six different 

thermodynamic packages. Table 3.4 lists the available models and provides a description 

of each. The NPSS data in this thesis was generated using the GasTbl thermodynamics 
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package as it is the simplest to implement in NPSS and a close match to the AEDsys 

thermodynamic package. However, the GasTbl package is limited to results whose 

equivalence ratio is less than one; therefore, solutions with equivalence ratios greater than 

one could not be investigated. 

 

Table 3.4 NPSS Thermodynamics Packages 

 

 The differences in the thermodynamics packages account for a 1.0% 

difference in net thrust and 0.8% difference in TSFC at SLS of the baseline engine in 

NPSS and AEDsys at the design point. Andrus (Andrus, 2007:23) provides a complete 

explanation on how the thermodynamics packages differ and how they contribute to these 

differences. 
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Hybrid Turbofan Engine and Pulsed Detonation Combustor in NPSS 

 The hybrid-PDE model contains the identical architecture of the baseline turbofan 

model shown in Fig. 3.1, with the exception of the burner section which is replaced by a 

pulsed detonation combustor (PDC). The NPSS Model code for the hybrid turbofan 

engine can be found in Appendix C.  

The hybrid engine and PDC inputs are listed in Table 3.5.  

Table 3.5 Hybrid engine on-design configuration 
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The inputs in Table 3.5 are identical to those of the baseline engine in NPSS, with 

the exception of the new parameters added for the PDC section: tube dimensions, number 

of tubes, ARvalve, Mvalve, equivalence ratio, frequency, and purge fraction. ARvalve is the 

ratio of the inlet valve cross-sectional area to the detonation tube cross-sectional area and 

Mvalve is the Mach number into the valve. The values of these parameters are the results 

of a parametric study performed for optimal engine performance at SLS. Altitude, Mach 

number, and fill fraction are the parameters varied to analyze the hybrid engine 

performance off-design. The NPSS PDC burner element (BRN36) configuration is shown 

in Fig. 3.2. 

 

Figure 3.2 Pulsed Detonation Combustor (BRN36) configuration with station 
numbers  
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Flow leaves the high pressure compressor and enters the pulsed detonation 

combustor. The flow control at the detonation tube inlet is modeled as a pressure loss  

P∆ /P term between the inlet and detonation tubes. This pressure loss matches the dry-

duct pressure loss experienced by the conventional combustor. For the flow going into 

the tubes, this dry duct pressure loss is intended to represent pressure loss through a 

valve. Since the detonation engine operates at a higher equivalence ratio than 

conventional engines, it requires less air to mix with the fuel for a similar enthalpy 

generation. Balancing the mass flow through the tubes necessitates shunting some of the 

air around the detonation tubes through an internal bypass. The mass flow rate through 

the internal bypass  is defined as: 

                                                                        (3.2) 

where  is the combined mass flow rate entering the PDC before it is split. The 

internal bypass ratio (iBPR) equals: 

                                                        
                                           (3.3) 

 In order to determine the mass flow rate into the detonation tubes   the 

fill fraction (ff) and purge fraction (pf) must first be defined. The fill air is the air mixed 

with the fuel, while the purge air is the unmixed portion. The purge air is used to expel 

the burned gases and also serves to cool the detonation tubes between cycles. The fill and 

purge fractions are defined in terms of volume of air for their respective portions of the 

tube filling process: 
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Since the air is stopped in the tube when the valve is closed, total density ( tρ ) can be 

found. The purge and fuel-air masses are calculated by multiplying the total density by 

the tube volume and the purge fraction and fill fractions, respectively: 

 _purge air tube tm pf V ρ= ⋅ ⋅  (3.6) 

 _fuel air mix tube tm ff V ρ− = ⋅ ⋅  (3.7) 

where Vtube = Atube * ltube. 

 Equations 3.6 and 3.7 represent the amount of purge air and fuel-air mixture that 

flow into one tube during each cycle. The amount of air to send through the valve at the 

opening of the detonation tube is calculated in Eqs. 3.8 - 3.12: 
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where  mfill air is the mass of the air that is detonated and mfuel is the fuel used during one 

cycle. Once the mass of air flowing into the tubes during one cycle is known, the time 

averaged steady state mass flow rate into the detonation tubes  is calculated by 

multiplying the total mass of air into the tubes by the user inputs of frequency (f) and the 

number of tubes (ntubes): 

                                                                  (3.13) 

The thermodynamics within the pulsed detonation combustor are modeled after 

the work of Heiser and Pratt (Heiser and Pratt, 2002:1) with a Dyer and Kaemming 

correction (Dyer and Kaemming, 2002:1) to more accurately conserve system energy. To 

calculate the detonation properties at the tube exit, implementation into NPSS required a 

few modifications to Equations 2.7 and 2.8. The quantity  as defined by Eqs. 2.11 

and 2.12 is rearranged as: 

  (3.14) 

This allows for burner inlet and exit enthalpies, specific heat, and inlet engine 

temperature parameters to be used to solve for the Chapman-Jouguet Mach number, Eq. 

2.8, and entropy gain across the burner, Eq. 2.9. The pressure rise across the shock is then 

calculated as: 
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Having solved for the pressure and entropy at the detonation tube exit, all properties of 

the fluid at this point (station 4) are solved for through thermodynamic relationships. 

However, as mentioned in the previous chapter, instead of using the pressure and entropy 

at the detonation tube exit to solve for all the properties of the fluid at this point, which 

ignores the eventual pressure loss that the gas will go through due to expansion waves, 

entropy and the change in enthalpy liberated by the combustion process are used to solve 

for the properties at the detonation tube exit. Available energy is calculated using the 

known CJ entropy originally calculated by Heiser and Pratt (Heiser and Pratt, 2002:1), 

Eq. 2.9, with the known system enthalpy of (h0+qadd) in order to ensure that energy is 

conserved within the system. The NPSS PDC burner element code is found in Appendix 

D. 

Rasheed et al. (Rasheed et al., 2006) showed that exhausting a pulsed detonation 

combustor directly into a turbine lowers the turbine efficiency and has structural 

ramifications affecting the engine life. The hybrid model is based on the assumption that 

the flow into the turbine is steady flow. A subelement to the PDC was created that allows 

for the application of a pressure drop and enthalpy loss, however, no such loss is applied 

in this model. 

 

Hybrid Turbofan Engine Off-Design 

 Fill fraction is the primary method of thrust control as prior work on PDEs 

indicated that performance gains may be made at fill fractions other than one (Glaser et 

al., 2004:1). Frequency and equivalence ratio can also be used as variables to throttle the 
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engine as shown by the work of Schauer et al.(Schauer et al., 2001:6) and Hoke et al. 

(Hoke et al., 2005:2). Frequency is chosen to be a user input and constant throughout 

flight, whereas for the hybrid engine to operate at altitudes above 13,000 ft, the 

equivalence ratio has to be varied to gain the maximum thrust at a given Mach number 

and altitude.  Therefore, the equivalence ratio is adjusted at each operating condition to 

yield maximum thrust. The engine constraints are shown at the bottom of Table 3.2 and 

controls were implemented into the solver to ensure the model stayed within these 

constraints. 

 When running the NPSS solver off-design, an error was given for the constant 

area mixer, MIX39, which combines the flow coming out of the detonation tubes with the 

internal bypass flow of the PDC. In design mode, the user provides a Mach number for 

the tube flow into the mixer, which determines the primary entrance area of the mixer. 

The area of the internal bypass flow entering the mixer is determined by varying the area 

until the static pressure of the two streams equal. This conserves energy, continuity, and 

momentum when mixing the flows exiting the tubes and the internal bypass flow into 

one.   

Running the model in off-design mode at various fill fractions, Mach numbers, 

and altitudes, however, yielded a static pressure difference between the two flows when 

entering MIX39. As the fill fraction decreases from the design fill fraction, the mass of 

the fill air decreases, thus there is less mass flow entering the tubes and more flow 

entering the internal bypass as shown in Eqs. 3.13 and 3.2, respectively: 

  (3.13) 
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  (3.2) 

As the mass flow of the internal bypass increases, the static pressure (p) decreases for a 

fixed area. The internal bypass flow behaves as pipe flow, and as mass flow increases, 

velocity increases (assuming incompressible flow), Eq. 3.16,  and thus the static pressure 

must decrease to maintain a constant total pressure (pt) shown in Eq. 3.17: 

  (3.16) 

 21
2 tV p p constρ + = =  (3.17) 

This yields a lower static pressure entering the mixer from the internal bypass than from 

the detonation tubes. The NPSS MIX39 requires that the incoming streams have equal 

static pressures in order to mix. To converge to a solution off-design, the static pressure 

of the internal bypass flow entering the mixer must be increased to match the static 

pressure of the flow coming out of the detonation tubes into the mixer. This is 

accomplished by decreasing the mass flow of the internal bypass, as mass flow and static 

pressure have an inverse relationship as seen from Eqs. 3.16 and 3.17. To decrease the 

mass flow of the internal bypass, a bleed was implemented, shown in Fig. 3.2 as BLD4, 

in which the mass flow is bled from the internal bypass until the static pressure of the two 

streams entering MIX39 match. The bleed flow then enters back into MIX40 and MIX44 

on either side of the low pressure turbine. The flow is equally divided into MIX40 and 

MIX44 and does not present a static pressure error. MIX39 caused an NPSS convergence 

error because there is an unequal amount of independent (9) and dependent variables 
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(10). The internal bleed is added as an independent variable to be varied until the static 

pressure of the two flows entering the mixer equal. 

 MIX39 allows for the flow exiting the PDC to cool to below the temperature 

constraint before entering the turbine, however, it has the potential to be the source of a 

significant pressure loss. No pressure loss term is applied to the mixer in this model, but 

the possibility of such a loss is recognized. 

 The next chapter utilizes this PDC combustor configuration to analyze the hybrid 

turbofan performance at off-design conditions as compared to the conventional baseline 

model. 
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IV. Analysis and Results 

 

Introduction 

       This chapter contains the performance of the baseline turbofan evaluated at 

off-design conditions in AEDsys and NPSS and an off-design analysis of the hybrid 

turbofan modeled in NPSS. The baseline turbofan is evaluated in two programs to 

establish a foundation for comparing the engine off-design. 

 

Baseline Turbofan Off-Design Performance 

 The on-design baseline model yields a thrust variation of approximately 1.0% and 

thrust specific fuel consumption (TSFC) variation of approximately 0.8% between 

AEDsys and NPSS. This deviation is due to differences in the thermodynamic models of 

the two programs in specific heat and enthalpy. The baseline turbofan model is run off-

design in both AEDsys and NPSS. Throttle hooks are shown in Fig. 4.1 across six 

different Mach number and altitude levels. The throttle hooks are generated by varying 

the fuel-air ratio (FAR) to match a selected a thrust value, which is then plotted against 

the corresponding TSFC. As seen in the figure, the two programs display agreement at 

the design point; however, the solutions diverge at higher Mach numbers and altitudes. 

This divergence is due to differences in off-design component efficiencies. The AEDsys 

program component adiabatic efficiencies do not change from their on-design values, 

whereas the NPSS program utilizes component maps for off-design performance. 

Variation in efficiencies for NPSS at off-design conditions is shown in Figs. 4.2 and 4.3.  
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The baseline turbofan is run at maximum thrust at maximum Tt4 at SLS, and at maximum 

cπ  at all other altitudes. The AEDsys low pressure and high pressure spool efficiencies 

remain constant at 0.99 as expected. The NPSS low pressure compressor and turbine and 

high pressure compressor efficiencies change as Nc/(Nc design) increases. The high 

pressure turbine efficiency remains constant; however, the fan efficiency experiences a 

severe drop as it moves away from the design speed. The variations for the NPSS 

efficiencies are expected and may account for the differences in the throttle hook results 

between AEDsys and NPSS. 

 

 

 

Figure 4.1 Throttle hook baseline engine comparison using NPSS and AEDsys 
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Figure 4.2 Low pressure spool adiabatic efficiencies for NPSS and AEDsys off-design 

 

Figure 4.3 High pressure spool adiabatic efficiencies for NPSS and AEDsys off-design 
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Hybrid Turbofan Off-Design Results 

 The hybrid turbofan model is evaluated off-design over a range of Mach numbers, 

altitudes, and fill fractions to determine the effects on engine performance. Engine 

constraints are placed in NPSS to ensure that the model does not violate the maximum 

engine control values of Tt4, cπ , Pt3 and Tt3, and Nc/(Nc design) as listed as the bottom of 

Table 3.2. 

 

Code Verification and Operating Limit 

 The hybrid engine is run in NPSS at the design point in off-design mode to  

validate the off-design code for the engine. Table 4.1 shows the engine data at the design 

point in both design and off-design mode. The data is very similar with a TSFC and 

thrust variation of 0.26% and 0.01%, respectively. 

 The engine operating envelope is found for both the baseline and hybrid engines  

in NPSS and shown in Fig. 4.4. The envelope is attained by running the model at sea 

level at increasing flight Mach numbers until NPSS no longer converges to a solution. 

The far right boundary is obtained by gradually increasing the flight altitude at the 

maximum Mach number. The top boundary is found via a similar method. The models 

are run off-design at maximum thrust and a fill fraction of 1.0 using the on-design 

parameters shown in Table 3.5 with the exception of the equivalence ratio. The design 

equivalence ratio only allows the hybrid engine to operate at a maximum of 13,000 ft. To 

obtain maximum performance, the equivalence ratio is varied to yield the maximum 

thrust at the flight Mach number and altitude. This is accomplished in NPSS by varying 
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the FAR, which is a user input, to yield the maximum thrust at a particular flight 

condition. Thus, the equivalence ratio varies along the operating limit line ranging from a 

minimum of 0.79 at M = 1.7 and Alt = 75,000 ft to a maximum of 0.93 at M = 1.8 and 

Alt = 0.0 ft. The baseline engine has a higher altitude limit of 113,000 ft as compared to 

that of the hybrid engine with a maximum of 80,000 ft. Both models have the same Mach 

number limit of 2.2.   

 
Table 4.1  Hybrid engine test data showing the design point and the design point run at off-design 
using NPSS 
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Figure 4.4a Mach number and altitude operating envelope at maximum thrust, 
baseline and hybrid engine using NPSS 
 

 

Figure 4.4b shows the aircraft flight operating envelope as compared to the 

operating envelope of the engine. The flight operating envelope is estimated using a lift 

to drag ratio at cruise conditions on the order of 10 with each engine supporting 100,000 

lbs of weight. This comes from an assumed thrust to weight ratio of 0.4 for a 40,000 lb 

engine. The flight envelope is much smaller than that of the engine, with a maximum 

altitude of 38,000 ft and a maximum Mach number of 1.83. The hybrid engine’s flight 

altitude is constrained to lower than that of a conventional aircraft; however, it is still 

acceptable for flight. The lower altitude limit of the hybrid engine is due to the limitations 

of the internal bypass. The internal bypass ratio is on the order of 0.3 at a fill fraction on 

1.0. This ratio increases as the fill fraction is throttled to lower values as seen in Fig. 4.4c. 

Figure 4.4c is generated by selecting the fill fraction and varying the FAR upward to 
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increase thrust. At the FAR for maximum thrust, any more increase in FAR results in non 

convergence in NPSS due to the internal bleed air equaling zero and the static pressure of 

the internal bypass flow entering MIX39 no longer equaling the static pressure of the 

flow exiting the detonation tubes.  

 

 
Figure 4.4b Mach number and altitude engine and flight operating envelope for the 
hybrid engine at maximum thrust using NPSS 
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Figure 4.4c  Internal bypass ratio variation with fill fraction at SLS and cruise 
conditions at maximum thrust 
 
 

Component Data 

 Component interface data for the baseline and hybrid engines at sea level static 

and cruise conditions are shown in Tables 4.2 and 4.3. The models are run at the 

configuration shown in Table 3.5 at maximum thrust and a fill fraction of 1.0. At SLS, 

the hybrid engine has a 12.7% greater thrust than the baseline engine, but at a cost of a 

5.3% increase in TSFC. At cruise conditions of M = 0.8 and Alt = 30,000 ft, the hybrid 

engine has a thrust gain of 14.7% over the baseline and it also has a lower TSFC by 

3.1%. These results are summarized in Table 4.3c and indicate that the hybrid engine 

could yield better performance than the baseline at cruise conditions. 
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Table 4.2a NPSS component interface data for the baseline engine at SLS, maximum thrust 
 

 

 

 

Table 4.2b NPSS component interface data for the hybrid engine at SLS, maximum thrust (ff = 1) 
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Table 4.3a NPSS component interface data for the baseline engine at cruise, maximum thrust 
 

 

 
 
 
 
 
                Table 4.3b NPSS component interface data for the hybrid engine at cruise, maximum thrust (ff = 1) 
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Table 4.3c Maximum power output comparison baseline and hybrid engines 

 

 

Table 4.4 shows a comparison of the fluid properties for both the baseline and 

hybrid engine at the entrance and exit of the combustor at SLS and cruise conditions at 

maximum thrust. The properties of the flow entering station 3.1 are fairly similar for the 

baseline and hybrid engines. The properties of the flow exiting the PDC are taken at the 

exit of MIX39 (station 4.0 as shown in Fig. 3.4), which combines the tube and internal 

bypass flows. With no internal bypass (and no mixer), the flow exiting the PDC tubes 

could be much higher than the 3200 R limit as seen from Tables 4.2b and 4.3b at station 

3.9. MIX39 allows the flow to cool below the temperature constraint of 3200R at a cost 

of a reduced stagnation pressure. MIX39 is an NPSS element that, through 

thermodynamic analysis, drops the exit stagnation pressure due to constant area mixing 

(e.g., see Oates pg. 166). The burner pressure ratio of the baseline engine is 0.96 for SLS 

or cruise. The burner pressure ratio for the PDC ranges from 1.20 at SLS to 1.21 at cruise 

(M = 0.8, Alt = 30,000 ft).  If the exit stagnation pressure of the flow is considered at the 

exit of the detonation tubes (station 3.9 in Tables 4.2b and 4.3b), the pressure ratio of the 
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burner is1.47 at SLS and 1.51 at a cruise. Thus, the internal mixer causes about a 23.7% 

reduction in the combustor pressure ratio for SLS or cruise.  

 

Table 4.4 Combustor Properties at SLS and Cruise, Maximum Power (ff = 1) 

 

  

The combustor properties in Table 4.4 are calculated assuming steady flow 

through the PDC. Applying a 4% pressure loss in the TTSS element to account for 

unsteady losses yields a 0.5% reduction in thrust and a 0.5% increase in TSFC. An 8% 

loss would yield a 1.2% reduction in thrust and a 1.2% increase in TSFC. These losses 

may be low due to their application at the exit of the detonation tubes. Exit losses do not 

capture valve losses. In order to model the pressure losses due to the opening and closing 

of the valves in to the detonation tubes, unsteady affects should be included in the 

thermodynamics of the PDC cycle. This was not included in this work. 
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Hybrid Turbofan Performance Comparison 

Throttle hooks for the hybrid engine are performed at the configuration shown in 

Table 3.5 at maximum thrust at a fill fraction of 1.0 and compared to that of the baseline 

engine in Figs. 4.5a and 4.5b.  

 

 

 

Figure 4.5a Throttle hook comparison baseline and hybrid turbofan engines in     
NPSS 
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Figure 4.5b Zoomed in view of Fig. 4.5a  

 

Figure 4.5b shows a comparison of the hybrid and baseline engine throttle hooks 

at sea level static and 30,000 ft at a variety of Mach numbers. The baseline engine yields 

a lower TSFC at lower thrust values for a majority of the thrust range; however, as the 

thrust increases, the TSFCs cross. This crossing also occurs at the higher Mach numbers. 

It is seen that the baseline engine has a larger thrust range. The lower hybrid range of 

thrust occurs since the internal bypass bleed air (BLD4) at station 3.93 (Fig. 3.2) is much 

greater than the air flowing through the internal bypass, due to reduced bypass flow 

needed to balance the static pressure at MIX39, and the solver cannot converge on a 

solution. The internal bypass bleed air variation with thrust is shown in Fig. 4.5c. As the 

thrust increases, less air is bled from the internal bypass to balance static pressures in 

MIX39. The thrust increases until the bleed air is zero, after which the static pressures 

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 5000 10000 15000 20000

TS
FC

 (l
bm

/h
r)

/l
bf

Thrust (lbf)

Throttle Hooks Engine Comparison (NPSS)

Baseline: M = 0.7, Alt = 30 kft

Hybrid: M = 0.7, Alt = 30 kft

Baseline: M = 0.9, Alt = 30 kft

Hybrid: M = 0.9, Alt = 30 kft

Baseline: M = 1.1, Alt = 30 kft

Hybrid: M = 1.1, Alt = 30 kft



 

50  

will not balance. If it were possible to provide additional air pumped into the mixer, one 

could increase the thrust. No attempts were made for this work. The internal bypass bleed 

is the limiting factor for the hybrid engine performance. 

 

Figure 4.5c  Internal bypass bleed air variation with thrust 

 

Figure 4.6 shows the effects of fill fraction, with throttle hooks run at sea level 

static and cruise conditions at maximum thrust at the configuration shown in Table 3.5. 

Figure 4.6 shows that fill fraction can be adjusted to reduce the TSFC at any thrust level 

to roughly that of the baseline engine and perhaps slightly lower. The best results are seen 

at the maximum thrust level of each fill fraction shown in Figs. 4.6b and 4.6d.  
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Figure 4.6a Throttle hooks at various fill fractions at SLS 

 

Figure 4.6b Throttle hooks at fill fractions from 0.4 to 1.0 at maximum thrust at 
SLS 
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Figure 4.6c Throttle hooks at various fill fractions at cruise (M = 0.8, Alt = 30kft) 

 

Figure 4.6d Throttle hooks at fill fractions from 0.4 to 1.0 at maximum thrust at 
cruise (M = 0.8, Alt = 30kft) 
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For comparison purposes, throttle hooks were run at various frequencies in Fig. 

4.7 at the configuration shown in Table 3.5 at a fill fraction of 1.0. The results are very 

similar and indicate that frequency may be considered as an additional throttling 

parameter for future research. 

 

Figure 4.7a Throttle hooks at various frequencies at SLS 

 
Figure 4.7b Throttle hooks at various frequencies at maximum thrust at SLS 
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Figure 4.7c Throttle hooks at various frequencies at cruise (M = 0.8, Alt = 30kft) 
 

 

Figure 4.7d Throttle hooks at various frequencies at maximum thrust at cruise     
(M = 0.8, Alt = 30kft) 

  

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5000 10000 15000

TS
FC

 (1
/h

)

Thrust (lbf)

Throttle Hooks  for Hybrid Engine at Cruise (various frequencies)

Freq = 30 Hz

Freq = 45 Hz

Freq = 60 Hz

Freq = 75 Hz

Baseline

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 5000 10000 15000

TS
FC

 (1
/h

)

Thrust (lbf)

Throttle Hooks for Hybrid Engine at Cruise (various frequencies)

Hybrid

Baseline



 

55  

Figures 4.8a, 4.8b, and 4.8c show the effect of flight Mach number for the hybrid 

engine as compared to the baseline at various altitudes and fill fractions at sea level and 

30,000 ft.  The model is run at the configuration in Table 3.5 at maximum thrust. At 

higher Mach numbers the baseline engine thrust is slightly higher, except for a fill 

fraction of one at sea level. At cruising altitude there is a range of fill fractions where the 

hybrid engine can match the baseline.  

 

 

 

Figure 4.8a Variation of thrust with flight Mach number comparison of the baseline 
and hybrid engines in NPSS at 0.0 ft, 30,000 ft, and 60,000 ft (maximum thrust) 
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Figure 4.8b Variation of thrust with flight Mach number comparison of the baseline 
and hybrid engines in NPSS at fill fractions of 0.6, 0.8, and 1.0 at sea level 
(maximum thrust) 
 

 

Figure 4.8c Variation of thrust with flight Mach number comparison of baseline and 
hybrid engines at fill fractions of 0.6, 0.8, and 1.0 at 30,000 ft (maximum thrust) 
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 The effects of fill fraction on thrust are plotted at SLS and cruise conditions in 

Fig. 4.8d. For the configuration listed in Table 3.5 and at maximum thrust, in general, a 

lower fill fraction corresponds to a lower thrust. 

 

 

Figure 4.8d Thrust variation with fill fraction for the hybrid engine at SLS and 
cruise (maximum thrust) 
 
 
 The thrust is divided by the freestream pressure to determine the effects of 

altitude on the engine. As shown in Fig. 4.8e, the altitude has a significant effect on thrust 

as the curves at SLS and cruise conditions are nearly identical. 
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Figure 4.8e Thrust divided by free stream pressure variation with fill fraction for 
the hybrid engine as SLS and cruise (maximum thrust) 
 

 Fill fraction is also varied in Fig. 4.9 to determine the effects on TSFC at SLS and 

cruise conditions. The model is run at maximum thrust at the configuration in Table 3.5. 

Results indicate that at cruise conditions the lowest TSFC is found at a fill fraction of 0.7. 

The two curves are at different thrusts. At a thrust of 13,000 lbs, TSFC at cruise is 0.6468 

and TSFC at SLS is 0.2794. 
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Figure 4.9 TSFC variation with fill fraction for the hybrid engine at SLS and cruise 
(maximum thrust) 
 

 The mass flow rate variation with thrust is shown in Figs. 4.10a, 4.10b, and 4.10c. 

The model is run at the configuration in Table 3.5 at maximum power at SLS and cruise 

conditions and fill fractions of 0.6, 0.8, and 1.0. The baseline engine has a higher mass 

flow rate at all thrusts than the hybrid. The fill fraction affects the mass flow rate only by 

the range of thrust it covers. 
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Figure 4.10a Mass flow rate variation with thrust comparison of the baseline and 
hybrid engines at SLS and cruise conditions (maximum thrust) 
 

 

Figure 4.10b Mass flow rate variation with thrust comparison of the baseline and 
hybrid engines at SLS at fill fractions of 0.6, 0.8, and 1.0 (maximum thrust) 
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Figure 4.10c Mass flow rate variation with thrust comparison of the baseline and 
hybrid engines at 30,000 ft at fill fractions of 0.6, 0.8, and 1.0 (maximum thrust) 
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Figure 4.11 Fan pressure ratio variation with Tt2/T0 comparison of the baseline and 
hybrid engines at SLS and cruise (maximum thrust) 
 
 

 
Figure 4.12 High pressure compressor ratio variation with Tt2/T0 comparison of the 
baseline and hybrid engines at SLS and cruise (maximum thrust) 
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Figure 4.13 Low pressure turbine pressure ratio variation with Tt2/T0 comparison of the 
baseline and hybrid engines at SLS and cruise (maximum thrust) 
 

 

Figure 4.14  Turbofan bypass ratio variation with Tt2/T0 comparison of the baseline and 
hybrid engines at SLS and cruise (maximum thrust) 
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Component Adiabatic Efficiencies 

 It was of interest to determine how changing the adiabatic efficiencies of various 

components affected the performance of the hybrid engine. Changes in the inlet, fan, 

turbine, compressor, and burner efficiencies were evaluated via throttle hooks shown in 

Figs. 4.16 - 4.21, respectively. The dotted lines represent the on-design efficiencies. The 

model was run at maximum thrust at the configuration shown in Table 3.5. With a 5% 

decrease in efficiency, each component resulted in an average of 1.2% to 1.5% increase 

in TSFC with the exception of the burner. The burner efficiency is used to calculate the 

heat addition into the system as shown in Eq. 2.11. Decreasing the efficiency of the 

burner in Fig. 4.21 less than 97.5% leads to choking, in which case the solver cannot 

converge to a solution. Decreasing burner efficiency from its original value of 99.5% to 

97.5% resulted in a 3.4% average decrease in TSFC. 

 

Figure 4.15 Throttle hooks for inlet efficiency of the hybrid engine (maximum 
thrust) 
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Figure 4.16 Throttle hooks for fan efficiency of the hybrid engine (maximum thrust) 

 

 

Figure 4.17 Throttle hooks for high pressure turbine efficiency of the hybrid engine 
(maximum thrust) 
 

0.32

0.33

0.34

0.35

0.36

0.37

0.38

20000 25000 30000 35000 40000 45000 50000

TS
FC

 (l
bm

/h
r)

/l
bf

Thrust (lbf)

Throttle Hooks Fan Efficiency at SLS

Fan eff = .8827

Fan eff = .8327

0.32

0.33

0.34

0.35

0.36

0.37

0.38

20000 25000 30000 35000 40000 45000 50000

TS
FC

 (l
bm

/h
r)

/l
bf

Thrust (lbf)

Throttle Hooks High Pressure Turbine Efficiency at SLS

HPT eff = .9057

HPT eff = .8557



 

66  

 

Figure 4.18 Throttle hooks for low pressure turbine efficiency of the hybrid engine 
(maximum thrust) 
 

 

Figure 4.19 Throttle hooks for low pressure compressor efficiency of the hybrid 
engine (maximum thrust) 
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Figure 4.20 Throttle hooks for high pressure compressor efficiency of the hybrid 
engine (maximum thrust) 
 

 

Figure 4.21 Throttle hooks for burner efficiency of the hybrid engine (maximum 
thrust) 
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Parameter On-Design Choices 

 The design choices listed in Table 3.5 used for the analysis above are based on a 

parametric study performed with the turbofan model at design conditions. Since the 

current model was modified for off-design performance, changes in these design 

parameters may improve engine performance at design and/or off-design conditions.  

 Throttle hooks were run at SLS and cruise conditions for various on-design 

frequencies, purge fractions, and equivalence ratios shown in Figs. 4.22 - 4.24, 

respectively, to determine if changing these parameters could improve performance. 

Figure 4.22 indicates that a lower design frequency may improve TFSC, but at the 

expense of thrust range. A lower equivalence ratio yields TSFC improvements similar to 

that of frequency; however, a design equivalence ratio below 0.88 chokes the burner inlet 

and a solution cannot be converged in Fig. 4.23. The design purge fraction may yield a 

lower TSFC as a purge fraction of 0.75 yields a 2.2% decrease in TSFC below design 

value of 0.5 with the same thrust range shown in Fig. 4.24. As seen from Eq. 3.6, the 

mass of the purge air increases as the purge fraction increases. The increased purge 

fraction increases the mass flow through the tubes while decreasing the flow through the 

internal bypass. This results in an increase in thrust as well as TSFC, however, thrust 

increases more than TSFC. A thorough parametric study should be conducted to identify 

such design parameters as number of tubes, tube geometry, etc., that may yield better 

performance at design and off-design conditions. 
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Figure 4.22 Throttle hooks at various design frequencies at SLS and cruise (M = 0.8, 
Alt = 30,000 ft) 
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Figure 4.23 Throttle hooks at various design equivalence ratios at SLS and cruise 
(M = 0.8, Alt = 30,000 ft) 
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Figure 4.24 Throttle hooks at various design purge fractions at SLS and cruise (M = 
0.8, Alt = 30,000 ft) 
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                                       V. Conclusions and Recommendations 

 

Introduction 

 A turbofan engine with a pulsed detonation combustor may have performance 

gains over a conventional turbofan, specifically in the areas of thrust and thrust specific 

fuel consumption. Research (Andrus, 2007) has shown that at design conditions, the 

hybrid engine may allow an 8.0% decrease in TSFC while maintaining thrust. The 

objective of this work was to develop a hybrid engine model with a pulsed detonation 

combustor to run off-design in NPSS, and to evaluate the performance of the hybrid 

engine at various off-design conditions. 

 

Hybrid Turbofan Engine Off-Design Performance 

 To determine the performance of the hybrid turbofan engine, the model was run 

over a range of off-design conditions, at various Mach numbers, altitudes, and fill 

fractions, and compared to that of the baseline engine. Equivalence ratio, frequency, and 

fill fraction were all potential parameters to be used to throttle the hybrid engine. After 

performing an operating limit analysis on the hybrid engine, it was discovered that at 

constant equivalence ratio, the aircraft has a maximum operating altitude of 13,000 ft.  In 

order for the hybrid engine to operate at realistic cruising altitudes, the equivalence ratio 

was adjusted until the maximum thrust for the given operating condition was reached. 

This allowed for a maximum engine operating envelope of M = 2.2, and Alt = 80,000 ft. 



 

73  

The estimated aircraft flight envelope resulted in a maximum altitude of 38,000 ft. This is 

less than that of an aircraft with a conventional burner, but acceptable for flight. 

Frequency or fill fraction could have been chosen as the independent throttling 

parameter, but it was decided that frequency would remain fixed and that fill fraction 

would be throttled for this model. Results indicate that adjusting either of these 

parameters can reduce the TSFC at any thrust level to roughly that of the baseline engine 

and slightly lower at some thrust levels, particularly at cruise conditions. These results 

are significant as incorporating hybrid PDEs into aircraft may save fuel costs. 

   

Recommendations 

 The hybrid model described in this research has shown to yield performance gains 

over a conventional engine, but not without limitations. The engine yields its lowest 

TSFC at maximum thrust which occurs when the internal bypass bleed is zero. The thrust 

range is limited due to the internal bypass of the PDC. The model could also not be run at 

fill fractions greater than one due to limitations of the internal bypass. Modifying the 

burner architecture to eliminate the internal bypass to accommodate fill fractions greater 

than one may be considered. This modification would also eliminate the need for an 

internal mixer, thus increasing the pressure of the flow exiting the PDC. Should the 

internal bypass remain in the PDC, the static pressure entering MIX39 can be controlled 

by decreasing the area of the duct into the mixer. Such a valve could allow for better 

engine performance as all flow would be maintained within the PDC. Throttling 

frequency as well as fill fraction may result in gains. Additionally, distributing all of the 
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bleed flow from the internal bypass into MIX 40 immediately preceding the high pressure 

turbine may result in better performance than splitting the bleed flow equally between 

MIX40 and MIX44. A boost pump should also be implemented to increase the pressure 

of the internal bleed flow into MIX40 due to the pressure increase of the flow exiting the 

PDC. Design parameters such as frequency, purge fraction, equivalence ratio, and tube 

geometry affect off-design performance and a complete parametric study should be 

performed to obtain the design parameters which yield the optimal design and off-design 

performance. 
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                  Appendix A. Derivation for Ideal PDE Cycle Thermodynamics 

 

This is a derivation of the entropy rise, thermal efficiency, and Chapman-Jouguet 

Mach number according to the Heiser and Pratt thermodynamics used in this thesis 

(Shapiro, 1953:193). 

                     

Figure A.1 

Consider the flow through a control volume of Fig A.1. The continuity equation 

for constant area is 
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The momentum equation is  

  

and noting for a perfect gas 2 2V pMρ γ= , this may be arranged to give 
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From the perfect-gas law  

     2 2 2
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ρ
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=         (A.3) 

 

 

Inserting equations A.1 and A.2 into A.3 yields 
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From the definition of the Mach number and perfect gas 
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Using the value of V2/V1 from Eq. A.5, Eq. A.4 becomes 
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From the energy equation 
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Elimination of T2/T1 from Eqs. A.6 and A.7 yields 
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Setting M1=1 and M2=MCJ (Shapiro, 1953:195) , Eq. A.6 becomes 
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Eq. A.8 becomes 
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Similarly,  
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From the definition of isentropic stagnation pressure 
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Substituting Eq. A.10 and M1=1 and M2=MCJ into Eq. A.11 yields 
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Defining the change in entropy as 
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and substituting Eq. A.9 and A.10 into Eq. A.12 yields the Heiser and Pratt change in 

entropy: 
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Deriving thermal efficiency  
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and since  

  

the thermal efficiency becomes 

  

To define MCJ we first rearrange the mass and momentum equations 
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The energy equation 2 2
1 1 2 2
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h V h V+ = + may be rearranged with the momentum 

equation to yield 
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Substituting the mass balance equation we get the Hugoniot relation: 
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Assuming a perfect gas and 1 ph c T= ,  2 2p addh c T q= − we get 
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The expression for the Mach number of the Rayleigh process at station 1 can be written  

as  
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Solving eqs. A.13 and A.14 to determine the volume and pressure ratios in terms of 

approaching Mach number yields 
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For any M1 the value of qadd is found by setting the quantity under the radical equal to 

zero. This yields 
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                                                  (A.16)
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                              Appendix B. Model File for Baseline Turbofan Engine 

// 
//-------------------------------------------------------------------- 
//   T U R B O J E T   E N G I N E   B U I L D                       | 
//                                                                   | 
//   B U I L D   A N D   V E R I F Y   T U R B O J E T               | 
//                                                                   | 
//   D E S I G N    P O I N T    O N L Y                             | 
//                                                                   | 
//------------------------------------------------------------------- 
//   T U R B O J E T   C O N F I G U R A T I O N 
//------------------------------------------------------------------- 
 
cout << "\t------------------------------------------------------\n" 
     << "\t  Baseline High Bypass Turbofan built to match AEDsys  \n" 
     << "\t------------------------------------------------------\n\n"; 
 
// Set model name 
MODELNAME = "Baseline HBTF CmpareAEDsys.mdl with mixers"; 
//-------------------------------------------------------- 
// set the thermo package 
//-------------------------------------------------------- 
  setThermoPackage("GasTbl"); 
//   setThermoPackage("Janaf"); 
 
//-------------------------------------------------------- 
// include the standard intepretted things 
//-------------------------------------------------------- 
#include <InterpIncludes.ncp> 
#include "ncp.view" 
//#include "bleed_macros.fnc" 
//#include "NewDuct.int" 
 
//----------------------------------------------------------------- 
// #include the definition file for the user defined engine 
// performance component 
//----------------------------------------------------------------- 
#include "EngPerf.cmp" ; 
   
 
//-------------------------------------------------------- 
// MODEL DEFINITION  
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//-------------------------------------------------------- 
// #################### FLIGHT CONDITIONS ##################### 
Element FlightConditions AMBIENT { 
   // Specify Design conditions 
  alt = 0.0;    // design altitude (ft) 
  MN = 0.01;  // design Mach number 
  //  Ps = 14.696; // ambient pressure (psia) 
  //  Ts = 59.0;  // ambient temperature (F) 
  W = 1500.00;  // design mass flow (lbm/s) 
}  
 
//########################### Inlet ############################ 
Element Inlet INLET { 
 
  eRamBase = 0.995; //Ram Recovery Factor?  
}  
 
// ###################### Splitter ############################### 
Element Splitter SPLIT { 
 BPR =  8.0;  // Bypass Ratio 
  
} 
 
// ##########################  FAN ############################### 
// here the fan represents the outer portion of the Low pressure 
// compressor spool 
Element Compressor Fan21 { 
// // use these lines if no compressor map is imlemented 
// effDes = 0.88042; //0.882886; 
// PRdes = 1.56; 
 
 // use these lines if compressor map is used... 
 #include "fan.map" ; //Compressor sub-element map  
 S_map.effDes = 0.8827; //0.88289; 
 S_map.PRdes = 1.56; 
 
} 
 
// ##################### Bypass Duct/ Nozzle/ Sink ################### 
Element Duct Bypass13 { 
 // AEDsys assumes flow in bypass duct is isentropic  
 // dPqPbase = 0.015;// pressure loss through the bypass duct 
} 
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Element Nozzle Noz18 { 
 // Cfg = 0.995; 
 dPqP = 1.0-0.98; // pressure loss from nozzle inlet to throat  
 PsExhName = "AMBIENT.Fl_O.Ps"; 
  
 // AEDsys uses a fixed convergent nozzle for bypass exit 
 switchType = "CONIC";  
} 
 
Element FlowEnd NozSink19 { 
  
} 
 
// ################ Low Pressure Compressor ########################### 
Element Compressor LPC20 { 
// // use these lines if no compressor map is implemented 
// effDes = 0.88042; // set the design point isentropic efficiency 
// PRdes = 1.56; 
  
 // use these lines if compressor map is used... 
 #include "lpc.map"; 
 S_map.effDes = 0.8827;// set design point isentropic efficiency 
 S_map.PRdes = 1.56; 
  
} 
 
// ###################### High Pressure Compressor ################## 
Element Compressor HPC25 { 
// // use these lines if no compressor map is implemented 
// effDes = 0.85755; // set the design point isentropic efficiency 
// PRdes = 16.66667; 
  
 // use these lines if compressor map is used... 
 #include "hpc.map" ; // Compressor sub element map 
 S_map.effDes = 0.8573 ; // design point isentropic efficiency 
 S_map.PRdes = 16.66667 ; // Set the pressure ratio at design 
  
} 
 
// #################   Bleed starting point   ######################### 
Element Bleed BLD3 { 
 // ========================= BLEEDS ========================== 
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 // Three Bleeds are taken off of the back side of the  
 //  High pressure Compressor 
 BleedOutPort BL_Cool_301 { 
  fracW = 0.05;   // mass flow (5% for cooling turbine) 
 } 
 BleedOutPort BL_Cool_302 { 
  fracW = 0.05; // mass flow (5% for cooling turbine) 
 } 
 BleedOutPort BL_Env_303 { 
  fracW = 0.01; // mass flow fraction (1% bleed) 
 } 
 
} 
 
// ############################ Fuel ############################# 
Element FuelStart FUEL32{ 
 LHV = 18400;  // BTU/lbm - Lower Heating Value of the fuel - 
                      // default is 18400 BTU/lbm 
   
} 
 
// ############################## Burner ######################### 
Element Burner BRN36{ 
  effBase = 0.995; // component efficiency  
  dPqPBase = 1.0 - 0.96; //pi b = 1.0-(dP/P) pressure drop across burner 
   
  // Change from burner default of FAR to TEMPERATURE 
  switchBurn = TEMPERATURE;  
   
  // Total temp. at exit (degrees Rankine) || not to be used with FAR 
  TtCombOut = 2900.0;  
 
} 
 
// ########################## Bleed Mixer/IGV ########################### 
Element Bleed MIX40 { 
 BleedInPort BlIn40{ 
  Pscale = 0.88; 
 } 
  
} 
 
// ########################## HP Turbine ########################### 
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Element Turbine HPT41 { 
 #include "hpt.map";  //High Pressure Turbine Map 
 S_map.effDes = 0.9057;//0.90555;0.91075; 
  
// InterStageBleedInPort BlIn41 { 
//  Pfract = 1;  //force the bleed to come in at enterance 
// } 
  
} 
// ########################## Bleed Mixer ########################### 
Element Bleed MIX44 { 
 BleedInPort BlIn44{ 
  Pscale = 0.68; 
 } 
  
 // Fl_I1.MN = .29; 
// Bl_I1.Pscale = 0.92; // Scale pressure so that the pressure ratio across mixer = 1 
// Bl_I1.MN = 0.31; 
} 
 
 
// ########################## LP Turbine ########################### 
Element Turbine LPT45 { 
 #include "lpt.map"  //Low Pressure Turbine Map 
 S_map.effDes = 0.9084;//0.90836;0.90906; 
 
// InterStageBleedInPort BlIn44 { 
//  Pfract = 1.; // force bleed to come in at turbine entrance 
// } 
 
} 
 
// ######################### Nozzle ####################### 
Element Nozzle Noz8 { 
 //Cfg = 0.995; 
 //Cv = 0.985; 
 dPqP = 1.0-0.985; 
 PsExhName = "AMBIENT.Fl_O.Ps"; 
 switchType = "CONIC"; // AEDsys uses a fixed convergent nozzle for core exit 
  
} 
 
// ########################## Terminate Flow ################ 



 

87 

 

Element FlowEnd Sink39 { 
// BleedInPort BlIn44{ 
//  Pscale = 0.96; 
// } 
 // sink for the environmental bleed... 
} 
 
Element FlowEnd NozSink9 { 
 // sink for the core airflow 
} 
 
// 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
// Put shafts in the model 
// 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
 
//######################### Low-Pressure Shaft ################ 
Element Shaft LPShf { 
 ShaftInputPort LPC, FAN, LPT ;  
 Nmech = 2000.0; 
 inertia = 1.0; // inertia is only needed for transient analysis 
 HPX = 0.0 ;// +131.; //+92.30; // Horsepower extracted from the shaft hp  ( = 325.7 
kW) 
 fracLoss = 1.0 - 0.99; // Fractional loss on positive port torque (1.0 - eta_m) 
} 
 
//######################### High Pressure Shaft ################### 
Element Shaft HPShf { 
 ShaftInputPort HPT, HPC ; 
 Nmech = 11000.0; 
 inertia = 1.0; 
 HPX = 143.178 ;//+372;// +415.;//  +400.0; // Horsepower extracted from the shaft hp  
( = 105.7 kW)/ eta m ( = 0.99) 
 fracLoss = 1.0 - 0.99; // Fractional loss on positive port torque (1.0 - eta_m) 
//cout << inertia.unitsunits <<endl;  
//quit(); 
} 
 
//######################## Engine Performance ###################### 
Element EngPerf PERF{ 
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}  
 
//___________________________________________________________ 
//                  Flow Connections                       // 
//                                                         // 
//        This is where the flow is defined for the engine // 
//_________________________________________________________// 
// 
 
//############# Ambient to Splitter ######################### 
linkPorts( "AMBIENT.Fl_O",  "INLET.Fl_I",  "FL0" ); 
linkPorts( "INLET.Fl_O",  "SPLIT.Fl_I",  "FL1" ); 
 
//#############  Bypass air     ############################# 
linkPorts( "SPLIT.Fl_02",  "Fan21.Fl_I",   "FLb2" ); 
linkPorts( "Fan21.Fl_O",  "Bypass13.Fl_I",  "FLb3" ); 
linkPorts( "Bypass13.Fl_O",  "Noz18.Fl_I",   "FLb7" ); 
linkPorts( "Noz18.Fl_O",  "NozSink19.Fl_I",  "FLb8" ); 
 
//############# Core Air Flow   ############################# 
linkPorts( "SPLIT.Fl_01",  "LPC20.Fl_I",   "FL2" ); 
linkPorts( "LPC20.Fl_O",  "HPC25.Fl_I",   "FL25" ); 
linkPorts( "HPC25.Fl_O",  "BLD3.Fl_I",            "FL3" ); 
linkPorts( "BLD3.Fl_O",         "BRN36.Fl_I",   "FL31" ) ; 
//##############   Fuel Flow   ############################## 
linkPorts( "FUEL32.Fu_O",  "BRN36.Fu_I",   "Fu3" ); 
linkPorts( "BRN36.Fl_O",  "MIX40.Fl_I",   "FL4"); 
linkPorts( "MIX40.Fl_O", "HPT41.Fl_I",   "FL41" ); 
linkPorts( "HPT41.Fl_O",  "MIX44.Fl_I",   "FL44"); 
linkPorts( "MIX44.Fl_O", "LPT45.Fl_I",   "FL45" ); 
linkPorts( "LPT45.Fl_O",  "Noz8.Fl_I",   "FL7"); 
linkPorts( "Noz8.Fl_O",  "NozSink9.Fl_I",  "FL8" ); 
 
//############## Bleed port linkage ########################## 
//linkBleedCB("BLD3", "MIX40", 0.05, 1.0, 1.0, "BL 1"); 
//linkBleedCB("BLD3", "MIX44", 0.05, 1.0, 1.0, "BL 2"); 
//linkBleedCB("BLD3", "Sink39", 0.01, 1.0, 1.0, "BL 3"); 
 linkPorts( "BLD3.BL_Cool_301", "MIX40.BlIn40", "BL 1"); 
 linkPorts( "BLD3.BL_Cool_302", "MIX44.BlIn44", "BL 2"); 
 linkPorts( "BLD3.BL_Env_303", "Sink39.Fl_I", "BL 3"); 
 
//$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
//          Mechanical (Shaft) connections 
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// $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
 
//############### Low-Pressure Spool ####################### 
linkPorts("LPC20.Sh_O", "LPShf.LPC", "LP1"); 
linkPorts("LPT45.Sh_O", "LPShf.LPT",  "LP2"); 
linkPorts("Fan21.Sh_O", "LPShf.FAN",  "LP3"); 
 
//############## High-Pressure Spool ####################### 
linkPorts("HPC25.Sh_O", "HPShf.HPC", "HP1"); 
linkPorts("HPT41.Sh_O", "HPShf.HPT",  "HP2"); 
 
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
//   Begin Run Definition 
// vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv 
 
cout << "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n" 
     << "               Begin Run Input definitions     \n " 
     << "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv\n\n"; 
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                        Appendix C. Model File for Hybrid Turbofan Engine 

// 
//------------------------------------------------------------------------ 
//   H Y B R I D   T U R B O F A N    E N G I N E   | 
//                                                                       | 
//----------------------------------------------------------------------- 
//     C O N F I G U R A T I O N 
//----------------------------------------------------------------------- 
 
cout << "\t-------------------------------------------------------------\n" 
     << "\t  Hybrid Pulsed Detonation Combustor High Bypass Turbofan ... \n" 
     << "\t-----------------------------------------------------------\n\n"; 
// Set model name 
MODELNAME = "PDC HBTF"; //Pulsed Detonation Combustor High Bypass 
Turbofan"; 
//-------------------------------------------------------- 
// set the thermo package 
//-------------------------------------------------------- 
  setThermoPackage("GasTbl"); 
  // setThermoPackage("FPT"); 
 
//-------------------------------------------------------- 
// include the standard intepretted things 
//-------------------------------------------------------- 
#include <InterpIncludes.ncp> 
#include "ncp.view" 
 
//------------------------------------------------------------------- 
// #include the definition file for the user defined engine 
// performance component 
//------------------------------------------------------------------- 
#include "EngPerf.cmp" ; 
   
 
//-------------------------------------------------------- 
// MODEL DEFINITION  
//-------------------------------------------------------- 
// #################### FLIGHT CONDITIONS ##################### 
Element FlightConditions AMBIENT { 
   // Specify Design conditions 
  alt = 0.0;   // design altitude (ft) 
  MN = 0.01;  // design Mach number 
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  //  Ps = 14.696; // ambient pressure (psia) 
  //  Ts = 59.0; // ambient temperature (F) 
  W = 1500.00;  // design mass flow (lbm/s) 
}  
 
//########################### Inlet ############################ 
Element Inlet INLET { 
 
  eRamBase = .995; //Ram Recovery Factor? //.995 
}  
 
// ###################### Splitter ############################### 
Element Splitter SPLIT { 
 BPR =  8.0;  // Bypass Ratio 
  
} 
 
// ##########################  FAN ############################### 
// here the fan represents the outer portion of the Low pressure 
// compressor spool 
Element Compressor Fan21 { 
// // use these lines if no compressor map is imlemented 
// effDes = 0.88042; //0.882886; 
// PRdes = 1.56; 
 
 // use these lines if compressor map is used... 
 #include "fan.map" ; //Compressor sub-element map  
 S_map.effDes = 0.8827; //0.88289;//.8827 
 S_map.PRdes = 1.56; 
 
} 
 
 
// ##################### Bypass Duct/ Nozzle/ Sink ################### 
Element Duct Bypass13 { 
 // AEDsys assumes flow in bypass duct is isentropic (p109, #9) 
 // dPqPbase = 0.015; // pressure loss through the bypass duct 
} 
 
Element Nozzle Noz18 { 
 // Cfg = 0.995; 
 dPqP = 1.0-0.98;  // pressure loss from nozzle inlet to throat  
 PsExhName = "AMBIENT.Fl_O.Ps"; 
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 switchType = "CONIC"; // AEDsys uses a fixed convergent nozzle for bypass exit 
} 
 
Element FlowEnd NozSink19 { 
  
} 
 
// ################ Low Pressure Compressor ########################### 
Element Compressor LPC20 { 
// // use these lines if no compressor map is imlemented 
// effDes = 0.88042;  // set the design point isentropic efficiency 
// PRdes = 1.56; 
  
 // use these lines if compressor map is used... 
 #include "lpc.map"; 
 S_map.effDes = 0.8827; // 0.88289; set the design point isentropic 
 //efficiency//.8827 
 S_map.PRdes = 1.56; 
  
} 
 
// ###################### High Pressure Compressor ################## 
Element Compressor HPC25 { 
// // use these lines if no compressor map is imlemented 
// effDes = 0.85755; //0.8855338;  // set the design point isentropic efficiency 
// PRdes = 16.66667; 
  
 // use these lines if compressor map is used... 
 #include "hpc.map" ; // Compressor sub element map 
 S_map.effDes = 0.8573 ; //0.857535 ; set the maps design point 
 //isentropic efficiency//.8573 
 S_map.PRdes = 16.66667 ; // Set the pressure ratio at design 
  
  
} 
 
// ######################   Bleed starting point   ######################### 
 
Element Bleed BLD3 { 
 // ============================ BLEEDS 
============================ 
 // Three Bleeds are taken off of the back side of the High pressure Compressor 
 BleedOutPort BL_Cool_301 { 
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  //fracBldWork = 1.0;  // work fraction where bleed is taken 
  //fracBldP = 1.0;     // Pressure fraction where bleed is taken 
  fracW = 0.05;    // mass flow (5% for cooling turbine) 
 } 
 BleedOutPort BL_Cool_302 { 
  //fracBldWork = 1.0; // work fraction (dhb/dh) 
  //fracBldP = 1.0;  // Pressure fraction (dPb/dP) 
  fracW = 0.05; // mass flow (5% for cooling turbine) 
 } 
 BleedOutPort BL_Env_303 { 
  //fracBldWork = 1.0; // (dhb/dh)  work fraction - closely tied with 
pressure fraction...  
  //fracBldP = 1.0;  // Pressure Fraction (dPb/dP) 
  fracW = 0.01; // mass flow fraction (1% bleed) 
 } 
} 
 
// ############################ Fuel ############################# 
 
Element FuelStart FUEL32{ 
 
 LHV = 18400;  // BTU/lbm - Lower Heating Value of the fuel - 
                      // default is 18400 BTU/lbm 
   
} 
 
// ############################## Burner ######################### 
 
// Element Burner BRN36{ 
//   effBase = 0.995; // component efficiency ... ??  
//   dPqPBase = 1.0 - 0.96; //0.04; // pi b - pressure drop across burner... ?? (dP/P)  
//    
//   switchBurn = TEMPERATURE; // Change from burner defauls using Fuel-air Ratio 
(FAR) to TEMPERATURE 
//   TtCombOut = 2900.0; // Total temperature at exit (degrees Rankine) || not to be 
used with FAR 
//  
//   // or use the default FAR and define what the FAR is...  
//   //  FAR = 0.02282;  // Fuel-to-Air ratio;  not to be used with TtCombOut, 
Wfuel, etc.  
//  
// } 
#include "PDC_burner_bleed.int" 
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Element PulseDetonationCombustor BRN36{ 
 effBase = .995; // burning efficiency//.995 
 dPqPBase = 1.0-0.96; // pressure loss across valves/through bypass 
 switchBurn = FAR; // set fuel-air ratio (vs equivalence ratio) 
 FAR = (0.0683 * 1.00); //approximately 85% of stoichiometric conditions 
 purgeFrac = 0.2; // designate purge fraction 
 fillFrac = 0.8;  // designate fill fraction 
 lTube = 36;  // length of tube in inches 
 n_tubes = 24;  // number of tubes 
 dTube = 2.0;  // inside diameter of tubes 
 tCycle = .016776271641; // cycle time 
 flowby = 1;                      // percentage of internal bypass flow into mixer39 
} 
// ########################## Wall heat exchange ######################## 
// *** not uses in the current model *** 
//Element Wall WALL38{ 
// Ahx1 = PI*36; // area of wall inside PDT 
// Ahx2 = PI*36*1.02; // area that bypass flow sees 
// ChxDes1 = 0.7;// heat transfer film coefficient - blind guess... 
// ChxDes2 = 0.7;//  
// CpMat = 0.1481;//specific heat of material (titanium @ 2160 R) 
// //     # tubes  pi/4  length     oD    iD(in)        rho(lbm/ft^3) Titanium 
// massMat = 36.*(PI/4.*(36./12.)*(2.25**2-2.**2)/144.)*280.93;//mass of material in 
lbm 
//  
//} 
 
// ######################   Internal Bypass Bleed   ######################### 
 
Element Bleed BLD4 { 
 // ============================ BLEEDS 
============================ 
 // Three Bleeds are taken from the internal bypass of the PDC 
 BleedOutPort BL_Cool_304 { 
  //fracBldWork = 1.0;  // work fraction where bleed is taken 
  //fracBldP = 1.0;     // Pressure fraction where bleed is taken 
  fracW = 0.499;    // mass flow (50% for cooling turbine) 
 } 
 BleedOutPort BL_Cool_305 { 
  //fracBldWork = 1.0; // work fraction (dhb/dh) 
  //fracBldP = 1.0;  // Pressure fraction (dPb/dP) 
  fracW = 0.499; // mass flow (50% for cooling turbine) 
 } 
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} 
 
// ############# PDC bypass mixer/Transition to steady-state device ##### 
Element Mixer MIX39{ 
 Fl_I1.MN = .95;  // Rather high MN, but it works where lower  
          // values do not... 
} 
// ########################## Bleed Mixer/IGV ########################### 
Element Bleed MIX40 { 
 BleedInPort BlIn40{ 
  Pscale = 0.88; 
 } 
 BleedInPort BlIn41{ 
  Pscale = .88; 
 } 
  
} 
 
// ########################## HP Turbine ########################### 
Element Turbine HPT41 { 
 #include "hpt.map";  //High Pressure Turbine Map 
 S_map.effDes = 0.9057;//0.90555;0.91075;//.9057 
  
  
} 
// ########################## Bleed Mixer ########################### 
Element Bleed MIX44 { 
 BleedInPort BlIn44{ 
  Pscale = 0.68; 
 } 
 BleedInPort BlIn45{ 
  Pscale = .68; 
 } 
  
} 
 
 
// ########################## LP Turbine ########################### 
Element Turbine LPT45 { 
 #include "lpt.map"  //Low Pressure Turbine Map 
 S_map.effDes = 0.9084;//0.90836;0.90906;//.9084 
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} 
 
// ######################### Nozzle ####################### 
Element Nozzle Noz8 { 
 //Cfg = 0.995; 
 //Cv = 0.985; 
 dPqP = 1.0-0.985; // pressure loss across the nozzle 
 PsExhName = "AMBIENT.Fl_O.Ps"; 
 switchType = "CONIC"; // AEDsys uses a fixed convergent nozzle for core exit 
  
} 
 
// ########################## Terminate Flow ################ 
Element FlowEnd Sink39 { 
 // sink for the environmental bleed... 
} 
 
Element FlowEnd NozSink9 { 
 // sink for the core airflow 
} 
 
Element FlowEnd NozSink1 { 
 // sink for the ibypass bleed airflow 
} 
// 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
// Put shafts in the model 
// 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
 
//######################### Low-Pressure Shaft ################ 
Element Shaft LPShf { 
 ShaftInputPort LPC, FAN, LPT ;  
 Nmech = 2000.0; 
 inertia = 1.0; // inertia is only needed for transient analysis 
 HPX = 0.0 ; //+92.30; // Horsepower extracted from the shaft hp  ( = 325.7 kW) 
 fracLoss = 1.0-.99; // Fractional loss on positive port torque (1.0 
 //- eta_m)1.0-.99 
} 
 



 

97 

 

//######################### High Pressure Shaft ################### 
Element Shaft HPShf { 
 ShaftInputPort HPT, HPC ; 
 Nmech = 11000.0; 
 inertia = 1.0;// inertia is only needed for transient analysis 
 HPX = 143.178 ;//  +400.0; // Horsepower extracted from the shaft hp  ( = 105.7 kW)/ 
eta m ( = 0.99) 
 fracLoss = 1.0 - .99; // Fractional loss on positive port torque (1.0 - eta_m) 
 //1.0-.99 
} 
 
//######################## Engine Performance ###################### 
Element EngPerf PERF{ 
}  
 
//___________________________________________________________ 
//                  Flow Connections                       // 
//                                                         // 
//        This is where the flow is defined for the engine // 
//_________________________________________________________// 
// 
 
//############# Ambient to Splitter ######################### 
linkPorts( "AMBIENT.Fl_O",  "INLET.Fl_I",  "FL0" ); 
linkPorts( "INLET.Fl_O",  "SPLIT.Fl_I",  "FL1" ); 
 
//#############  Bypass air     ############################# 
linkPorts( "SPLIT.Fl_02",  "Fan21.Fl_I",   "FLb2" ); 
linkPorts( "Fan21.Fl_O",  "Bypass13.Fl_I",  "FLb3" ); 
linkPorts( "Bypass13.Fl_O",  "Noz18.Fl_I",   "FLb7" ); 
linkPorts( "Noz18.Fl_O",  "NozSink19.Fl_I",  "FLb8" ); 
 
//############# Core Air Flow   ############################# 
linkPorts( "SPLIT.Fl_01",  "LPC20.Fl_I",   "FL2" ); 
linkPorts( "LPC20.Fl_O",  "HPC25.Fl_I",   "FL25" ); 
linkPorts( "HPC25.Fl_O",  "BLD3.Fl_I",            "FL3" ); 
linkPorts( "BLD3.Fl_O",         "BRN36.Fl_I",   "FL31" ) ; 
//##############   Fuel Flow   ############################## 
linkPorts( "FUEL32.Fu_O",  "BRN36.Fu_I",   "Fu3" ); 
//linkPorts( "BRN36.Fl_O1",  "WALL38.Fl_I1",  "Wa1" ); 
//linkPorts( "BRN36.Fl_O2",  "WALL38.Fl_I2",  "Wa2" ); 
//linkPorts( "WALL38.Fl_O1", "MIX39.Fl_I1",  "Fl39"); 
//linkPorts( "WALL38.Fl_O2", "MIX39.Fl_I2",  "Fl392"); 
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linkPorts( "BRN36.Fl_O1",  "MIX39.Fl_I1",  "Fl39"); 
linkPorts( "BRN36.Fl_O2",  "MIX39.Fl_I2",  "Fl392"); 
linkPorts( "BRN36.Fl_O3",  "BLD4.Fl_I",  "Fl393"); 
linkPorts( "BLD4.Fl_O",  "NozSink1.Fl_I", "Fl394"); 
linkPorts( "MIX39.Fl_O", "MIX40.Fl_I",   "FL4"); 
linkPorts( "MIX40.Fl_O", "HPT41.Fl_I",   "FL41" ); 
linkPorts( "HPT41.Fl_O",  "MIX44.Fl_I",   "FL44"); 
linkPorts( "MIX44.Fl_O", "LPT45.Fl_I",   "FL45" ); 
linkPorts( "LPT45.Fl_O",  "Noz8.Fl_I",   "FL7"); 
linkPorts( "Noz8.Fl_O",  "NozSink9.Fl_I",  "FL8" ); 
 
//############## Bleed port linkage ########################## 
 linkPorts( "BLD3.BL_Cool_301", "MIX40.BlIn40", "BL 1"); 
 linkPorts( "BLD3.BL_Cool_302", "MIX44.BlIn44", "BL 2"); 
 linkPorts( "BLD3.BL_Env_303", "Sink39.Fl_I", "BL 3"); 
 linkPorts( "BLD4.BL_Cool_304", "MIX40.BlIn41", "BL 4"); 
 linkPorts( "BLD4.BL_Cool_305", "MIX44.BlIn45", "BL 5"); 
 
//$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
//          Mechanical (Shaft) connections 
// $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
 
//############### Low-Pressure Spool ####################### 
linkPorts("LPC20.Sh_O", "LPShf.LPC", "LP1"); 
linkPorts("LPT45.Sh_O", "LPShf.LPT",  "LP2"); 
linkPorts("Fan21.Sh_O", "LPShf.FAN",  "LP3"); 
 
//############## High-Pressure Spool ####################### 
linkPorts("HPC25.Sh_O", "HPShf.HPC", "HP1"); 
linkPorts("HPT41.Sh_O", "HPShf.HPT",  "HP2"); 
 
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
//   Begin Run Definition 
// vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv 
 
cout << "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n" 
     << "               Begin Run Input definitions     \n " 
     << "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv\n\n"; 
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                            Appendix D. Pulsed Detonation Combustor Code 

#ifndef __PDC__ 
#define __PDC__ 
 
//************************************************************* 
// * Air Force Institute of Technology 
// * 2950 Hobson Way, Bldg 641 
// * Wright Patterson AFB, OH 45433 
// *  
// * Written by Ionio Q. Andrus, Capt., USAF 
// * Modified by Caitlin R. Thorn, Capt., USAF 
 
// BASED ON "Burner.int" included in NPSS, written by~~ 
// * NASA Glenn Research Center 
// * 21000 Brookpark Rd 
// * Cleveland, OH 44135 
// * 
//************************************************************** 
 
#include <InterpIncludes.ncp> 
 
class PulseDetonationCombustor extends Element { 
 
//------------------------------------------------------------ 
//     ******* DOCUMENTATION ******* 
//------------------------------------------------------------ 
 
 title = ""; 
 
  description = isA() + " will calculate performance for  
  pulsed detonation combustor."; 
 
  usageNotes = " 
 
The burner element performs high level burner performance 
calculations.  This element works with an entrance fluid and 
fuel stream.  It mixes the two flows together and then  
performs the burn calculations.  Please note that the burner 
has no control over the actual fuel stream conditions--fuel type, 
LHV, etc.  These values are properties of the fuel flow itself 
and are usually set in the FuelStart element.    
 



 

100 

 

There are two ways to specify the burner exit conditions.  The 
first way is specify the burner fuel-to-air ratio.  The second 
way is to set equivalence ratio.  The type of input used is  
controlled by an option switch. 
 
The burner tracks several different pressure losses.  The first, 
dPqP, accounts for duct friction pressure drops and approximates 
the pressure loss through valves.  The second, dPqPRayleigh,  
accounts for the Rayleigh pressure drop. dPRayleigh is input or   
calculated - see switchHotLoss, an iteration is necessary since   
the pressure loss itself is a function of the exit conditions. 
 
The burner also allow two efficiencies to be input.  The first 
efficiency, eff, refers to the efficiency based on enthalpy 
change.  The second efficiency, effChem, refers to the efficiency 
based on temperature change.  Both terms can be input.  However, 
the enthalpy efficiency is always applied first.  
 
Additionally, 
 
The user can request a pre burner pressure loss dPqP.  The  
pressure loss calculations are performed before all the other 
calculations are done.  This means that the combustion entrance  
pressure will not match the value indicated by the burner entrance. 
 
The user can request a heat transfer Qhx.  The heat transfer  
calculations are performed after all the other calculations are  
done.  This means that if heat transfer is being used, the exit  
temperature will not match the value indicated by the burner  
calculations. 
 
"; 
 
background = ""; 
 
  //------------------------------------------------------------ 
  //     ******* SETUP VARIABLES ******** 
  //------------------------------------------------------------ 
 
  real a_dPqP { 
    value = 0.0;  IOstatus = "input";  units = "none"; 
    description = "Duct friction pressure drop adder"; 
  } 
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  real a_dPqPAud { 
    value = 0.0;  IOstatus = "unset";  units = "psia"; 
    description = "Audit factor adder applied to pressure ratio"; 
  } 
  real a_eff { 
    value = 0.0;  IOstatus = "input";  units = "none"; 
    description = "Adiabatic efficiency adder"; 
  } 
    
  real a_effChem { 
   value = 0.0;  IOstatus = "input";  units = "none"; 
   description = "Chemical efficiency adder"; 
  } 
  real ARvalve { // Added 15Feb2007 - IA 
   value = 0.5;  IOstatus = "input";  units = "none"; 
   description = "Ratio of valve throat area to tube cross section area"; 
  } 
  real deltaS {  //Added 17Jan2007 - IA 
   value = 0.0; IOstatus = "output"; units = "none"; 
   description = "Change in entropy due to detonation"; 
  } 
  real DDT {  //Added 17Jan2007 - IA 
   value = 0.0005; IOstatus = "input"; units = "none"; //seconds 
   description = "Detonation to deflaration time in seconds"; 
  } 
  real dPqP { 
    value = 0.0;  IOstatus = "output";  units = "none"; 
    description = "Adjusted duct friction pressure drop"; 
  } 
  real dPqPBase { 
    value = 0.0;  IOstatus = "input";  units = "none"; 
    description = "Duct friction pressure drop "; 
  } 
  real dPqPRayleigh { 
    value = 0.0;  IOstatus = "input";  units = "none";  
    description = "Adjusted Rayleigh pressure drop"; 
  } 
  real dTube {  //Added 17Jan2007 - IA 
   value = 2.0; IOstatus = "input"; units = "none"; // inches... 
   description = "Inside diameter of the detonation tube"; 
  } 
  real eff { 
    value = 1.0;  IOstatus = "output";  units = "none"; 
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    description = "Adjusted adiabatic burner efficiency"; 
  } 
  real effBase { 
    value = 1.0;  IOstatus = "input";  units = "none"; 
    description = "Adiabatic burner efficiency, from socket "; 
  } 
  real effChem { 
    value = 1.0;  IOstatus = "input";  units = "none"; 
    description = "Adjusted chemical efficiency"; 
  } 
  real effChemBase { 
    value = 1.0;  IOstatus = "input";  units = "none"; 
    description = "Chemical efficiency, from socket"; 
  } 
  real eqRatio { 
    value = 1.0;  IOstatus = "input";  units = "none"; 
    description = "Equivalence ratio for fuel-air mixture"; 
  } 
  real FAR { 
    value = 0.0;  IOstatus = "output";  units = "none"; 
    description = "Fuel-to-air ratio"; 
  } 
  real FARDes { 
    value = 0.0;  IOstatus = "output";  units = "none"; 
    description = "Fuel-to-air ratio at design"; 
  } 
  real fillFrac {  //Added 17Jan2007 - IA 
   value = 1.0; IOstatus = "input"; units = "none"; 
   description = "Fill fraction "; 
  } 
  real flowby {//added Dec09 - CT 
   value = 1.0; IOstatus = "input"; units = "none"; 
   description = "Percentage of internal bypass into Mixer39"; 
  } 
  real fuelFractV { 
    value = 0.0;  IOstatus = "input"; units = "none"; 
    description = "Fraction of the incoming flow velocity fuel  
    enters the burner"; 
  } 
  real iBPR { //added 17Jan2007 - IA 
   value = 1.0; IOstatus = "output"; units = "none"; 
   description = "Bypass ratio internal to the PDC"; 
  } 
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  real iBPRdes { //added 1Feb2007 - IA 
   value = 1.0; IOstatus = "output"; units = "none"; 
   description = "Bypass ratio internal to the PDC at  
   design conditions"; 
  } 
  real lTube { //added 17Jan2007 - IA 
   value = 36; IOstatus = "input"; units = "none"; //inches?? 
   description = "length of the individual detonation tubes"; 
  } 
  real n_tubes{ //added 17Jan2007 - IA 
   value = 36; IOstatus = "input"; units = "none";  
   description = "Total number of detonation tubes used  
   in the PDC"; 
  } 
  real MCJ {   //added 17Jan2007 - IA 
   value = 3.0; IOstatus = "output"; units = "none"; 
   description = "Chapman-Jouguet Mach number of the  
   detonation wave."; 
  } 
  real Mvalve {   //added 15Feb2007 - IA 
   value = 1.0; IOstatus = "input"; units = "none"; 
   description = "Mach number of flow passing through  
   the valve throat."; 
  } 
  real qadd{ //added 17Jan 2007- IA 
   value = 0.0; IOstatus = "output"; units = "none"; 
   description = "Heat addition due to fuel combustion"; 
  } 
  real Qhx { 
    value = 0.0;  IOstatus = "input";  units = "Btu/sec"; 
    description = "Heat loss to thermal mass storage"; 
  } 
  real PqPRayleigh { 
    value = 1.0;  IOstatus = "output";  units = "none"; 
    description = "Adjusted Rayleigh pressure drop"; 
  } 
  real PqPRayleighDelta { 
    value = 0.0;  IOstatus = "output";  units = "none"; 
    description = "Bounded Rayleigh pressure drop - for loop only"; 
  } 
  real PqPRayleighError { 
    value = 1.0;  IOstatus = "output";  units = "none"; 
    description = "Adjusted Rayleigh pressure drop error"; 
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  } 
  real PqPRayleighMin { 
    value = 0.05;  IOstatus = "input";  units = "none"; 
    description = "Rayleigh pressure drop lower limit - for loop only"; 
  } 
  real PqPRayleighStep { 
    value = 0.05;  IOstatus = "input";  units = "none"; 
    description = "Maximum step for Rayleigh pressure drop  
    - for loop only"; 
  } 
  real PqPRayleighNew { 
    value = 1.0;  IOstatus = "output";  units = "none"; 
    description = "Previous adjusted Rayleigh pressure drop  
    - for loop only"; 
  } 
  real purgeFrac { //Added 17Jan2007 - IA 
   value = 0.25; IOstatus = "input"; units = "none"; 
   description = "Purge fraction coefficient for flow"; 
  } 
  real s_dPqP { 
    value = 1.0;  IOstatus = "input";  units = "none"; 
    description = "Duct friction pressure drop scalar"; 
  } 
  real s_dPqPAud { 
    value = 1.0;  IOstatus = "unset";  units = "none"; 
    description = "Audit factor scalar applied to pressure ratio"; 
  } 
  real s_eff { 
    value = 1.0;  IOstatus = "input";  units = "none"; 
    description = "Adiabatic efficiency scalar"; 
  } 
  real s_effChem { 
    value = 1.0;  IOstatus = "input";  units = "none"; 
    description = "Chemical efficiency scalar"; 
  } 
  real tauBlDn { // Added 17Jan2007 - IA 
   value = 5.; IOstatus = "input"; units="none"; 
   description = "Blowdown time constant"; 
  } 
  real tauValveOpen {  // Added 18Jan2007 - IA 
   value = 0.33333; IOstatus = "output"; units="none"; 
   description = "time valve open/ time cycle - from 0 to 1"; 
  } 
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  real tCycle{  // Added 17Jan2007 - IA 
   value = 0.01; IOstatus = "output"; units = "none"; //seconds  
   description = "Detonation engine cycle time (= 1/frequency)"; 
  } 
  real tolRayleigh { 
    value = 4e-05;  IOstatus = "input";  units = "none"; 
    description = "Iteration tolerance on momentum pressure drop"; 
  } 
  real tolWfuel { 
    value = 1e-05;  IOstatus = "input";  units = "none"; 
    description = "Iteration tolerance on temperature burn"; 
  } 
  real TtCombOut { 
    value = 0.0;  IOstatus = "input";  units = "R"; 
    description = "Exit temperature"; 
  } 
  real TtLast { 
    value = 0.0;  IOstatus = "input";  units = "R"; 
    description = "Previous exit temperature - for loop only"; 
  } 
  real TTSSeff{  // Added 17Jan2007 - IA 
   value = 1.0; IOstatus = "input"; units = "none"; 
   description = "Efficiency factor for the transition device."; 
  } 
  real TTSSdPqP{ // Added 17Jan2007 - IA 
   value = 0.0; IOstatus = "input"; units = "none"; 
   description = "Change in Pressure divided by Pressure  
   for transistion to steady state calculation."; 
  } 
  real tValve{  // Added 17Jan2007 - IA 
   value = 0.0002; IOstatus = "input"; units = "none"; //seconds 
   description = "Time for valves to open/close"; 
  } 
  real Wfuel { 
    value = 0.0;  IOstatus = "input";  units = "lbm/sec"; 
    description = "Combustor fuel flow"; 
  } 
  real WfuelError { 
    value = 0.0;  IOstatus = "input";  units = "lbm/sec"; 
    description = "Combustor fuel flow error"; 
  } 
  real WfuelLast { 
    value = 0.0;  IOstatus = "input";  units = "lbm/sec"; 
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    description = "Previous combustor fuel flow - for loop only"; 
  } 
  real WfuelNew { 
    value = 0.0;  IOstatus = "input";  units = "lbm/sec"; 
    description = "Next combustor fuel flow - for loop only"; 
  } 
  int countFuel { 
    value = 0;  IOstatus = "output"; 
    description = "Fuel loop counter"; 
  } 
  int countFuelMax { 
    value = 50;  IOstatus = "input"; 
    description = "Fuel loop maximum counter"; 
  } 
  int countRayleigh { 
    value = 0;  IOstatus = "output"; 
    description = "Rayleigh loop counter"; 
  } 
  int countRayleighMax { 
    value = 25;  IOstatus = "input"; 
    description = "Rayleigh loop maximum counter"; 
  } 
  int flagRayleighLossTooMuch { 
    value = 0;  IOstatus = "output"; 
    description = "If true, Rayleigh loop results in too much loss"; 
  } 
  int flagRayleighChoked { 
    value = 0;  IOstatus = "output"; 
    description = "If true, Rayleigh loop results in supersonic flow"; 
  } 
 
  // for backward compatibilty with old "aud" 
  FunctVariable a_dPqPaud { 
    units = "none"; IOstatus = "input"; 
    getFunction = "get_aAud"; setFunction = "set_aAud"; 
  } 
  real get_aAud() { return a_dPqPAud; } 
  void set_aAud(real userValue) { a_dPqPAud = userValue; } 
 
  FunctVariable s_dPqPaud { 
    units = "none"; IOstatus = "input"; 
    getFunction = "get_sAud"; setFunction = "set_sAud"; 
  } 
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  real get_sAud() { return s_dPqPAud; } 
  void set_sAud(real userValue) { s_dPqPAud = userValue; } 
 
  //------------------------------------------------------------ 
  //   ******* OPTION VARIABLE SETUP ******* 
  //------------------------------------------------------------ 
 
  Option switchAud { 
    allowedValues = { "BASE", "AUDIT" } 
    description = "Determines if the audit factors are used"; 
    IOstatus = "input"; 
    trigger=TRUE; 
  } 
 
   
  Option switchBurn { 
    allowedValues = { "FAR",  "EQRATIO" }; //"FUEL", "WFUEL", 
"TEMPERATURE", __ mod 18 Dec 2006 - IA - added "FILLFRACTION" 
    description = "Switch determines if burner is running to fuel flow, FAR, or T4.  Setting 
option to FUEL will burn using the burner value as an input.  Setting the option to 
WFUEL will burn using the value coming in from the fuel station."; 
    trigger=TRUE; 
  } 
 
  Option switchDes { 
    allowedValues = { "DESIGN", "OFFDESIGN" }; 
    description = "Design switch"; 
    trigger=TRUE; 
  } 
  // input kept in for backward compatible (remove later) 
  Option switchHotLoss { 
    allowedValues = { "INPUT", "CALCULATE","input" }; 
    description = "Switch determines if the hot pressure loss is input or iterated on"; 
    trigger=TRUE; 
  } 
  
  //------------------------------------------------------------ 
  // ****** SETUP PORTS, FLOW STATIONS, SOCKETS, TABLES ******** 
  //------------------------------------------------------------ 
   
  // FLUID PORTS 
  FluidInputPort Fl_I { 
    description = "Incoming flow"; 
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  } 
   
  FluidOutputPort Fl_O1 { 
    description = "Exiting combustion flow"; 
  } 
 
  FluidOutputPort Fl_O2 { 
    description = "Exiting bypass flow"; 
  } 
   
    FluidOutputPort Fl_O3 { 
    description = "Exiting bypass excess flow"; 
  } 
  // FUEL PORTS 
   
  FuelInputPort Fu_I { 
    description = "Incoming fuel flow"; 
  } 
   
  // BLEED PORTS 
   
  // THERMAL PORTS 
   
  // MECHANICAL PORTS 
   
  // FLOW STATIONS 
   
  //__________flow stations modified 18 Dec 2006- IA 
  FlowStation Fl_Icomb { 
     description = "Inlet station to detonation tube section  
     of burner (after the initial pressure loss is applied)"; 
  } 
   
  FlowStation Fl_IcombAir { 
     description = "Copy of the inlet station to detonation tube  
     section of burner(after the initial pressure loss is applied,  
     before flow is split and partitioned)"; 
  } 
   
 FlowStation Fl_Iprg { 
     description = "Station containing detonation tube purge fluid"; 
  } 
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 FlowStation Fl_Ocomb { 
    description = "Exit station to combustion section of burner 
 (before thermal storage heat transfer is calculated)"; 
  }   
   
 FlowStation Fl_Vit { 
    description = "Vitiated Fluid flow station before detonation (cold)"; 
  } 
   // ____________________----end flow station modifications 
    
  // SOCKETS 
   
  Socket S_dPqP { 
    allowedValues = { "dPqPBase" }; 
    description = "Dry duct and valve pressure loss";  //__ mod -IA- 18 Dec 2006 
    socketType = "dPqP"; 
  } 
   
  Socket S_eff { 
    allowedValues = { "effBase", "effChemBase" }; 
    description = "PulseDetonationCombustor adiabatic efficiency"; 
    socketType = "BURN_EFFICIENCY"; 
  } 
   
  Socket S_Qhx { 
    allowedValues = { "Qhx" }; 
    description = "Thermal storage socket"; 
    socketType = "HEATTRANSFER"; 
  } 
   
 
  // TABLES 
 
  //------------------------------------------------------------ 
  // ******* INTERNAL SOLVER SETUP ******* 
  //------------------------------------------------------------ 
   
  //------------------------------------------------------------ 
  //  ******  ADD SOLVER INDEPENDENTS & DEPENDENTS  ****** 
  //------------------------------------------------------------ 
   
  //------------------------------------------------------------ 
  // ******* VARIABLE CHANGED METHODOLOGY ******* 
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  //------------------------------------------------------------ 
  void variableChanged( string name, any oldVal ) { 
   // Check to see what variables were changed.... 
   // Change input/output status as necessary  - IA- 18 Dec 06   
 
    if( name == "switchBurn" ) { 
      if ( switchBurn == "FAR" ) { 
 FAR.IOstatus = "input"; 
 Wfuel.IOstatus = "output"; 
 TtCombOut.IOstatus = "output"; 
 eqRatio.IOstatus = "output"; 
      } 
//      else if ( switchBurn == "FUEL" ) { 
// FAR.IOstatus = "output"; 
// Wfuel.IOstatus = "input"; 
// TtCombOut.IOstatus = "output"; 
  //    } 
//      else if ( switchBurn == "WFUEL" ) { 
// FAR.IOstatus = "output"; 
// Wfuel.IOstatus = "output"; 
// TtCombOut.IOstatus = "output"; 
  //    } 
   //_________ added 5 Feb 2007 -IA- 
      else if ( switchBurn == "EQRATIO" ) { 
 FAR.IOstatus = "output"; 
 Wfuel.IOstatus = "output"; 
 TtCombOut.IOstatus = "output"; 
 eqRatio.IOstatus = "input"; 
      } 
      //___________ end of additions -IA- 
    } 
 
    else if( name == "switchHotLoss" ) { 
      if ( switchHotLoss == "INPUT" ) { 
 dPqPRayleigh.IOstatus = "input"; 
      } 
      else if ( switchHotLoss == "input"  ){ switchHotLoss = "INPUT"; } 
      else { 
 dPqPRayleigh.IOstatus = "output"; 
      } 
    } 
 
    else if( name == "switchAud" ) { 



 

111 

 

      a_dPqPAud.IOstatus  = "inactive"; 
      s_dPqPAud.IOstatus  = "inactive"; 
      if( switchAud == "AUDIT" ) { 
 a_dPqPAud.IOstatus  = "input"; 
 s_dPqPAud.IOstatus  = "input"; 
      } 
    } 
  } 
   
   
  //------------------------------------------------------------ 
  //   ******* PERFORM ENGINEERING CALCULATIONS ******* 
  //------------------------------------------------------------ 
   
  void calcPreLoss() { 
     
     
    //----------------------------------------------------------------- 
    // Check to see if the pressure sockets are empty, if not thenexecute 
    //----------------------------------------------------------------- 
    if ( !S_dPqP.isEmpty() ) { 
      S_dPqP.execute(); 
    } 
    dPqP = dPqPBase * s_dPqP + a_dPqP;  // calculate pressure losses (dry duct and 
Valve) 
    if( switchDes == "OFFDESIGN" ) { 
      if( switchAud == "AUDIT" ) { 
 dPqP = dPqP * s_dPqPAud + a_dPqPAud; 
      } 
    } 
       //comment -IA- Collect total enthalpy at inlet 
    real hin = Fl_I.ht; 
    real Pin = ( 1 - dPqP ) * Fl_I.Pt;  //coment -IA- apply pressure losses as calculated 
above 
       //comment -IA- copy flow to combustor flow 
    Fl_Icomb.copyFlowStatic( "Fl_I" );    
    Fl_Icomb.setTotal_hP( hin, Pin ); 
     
  } 
   
  void calcBurn() { 
     
    real TtCombOutTemp; 
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    real htStoich; 
    real WFuelLimit; 
    real WFuelHeat; 
     
    Fl_Ocomb.copyFlow( "Fl_Icomb" ); 
 
    //------------------------------------------------------------- 
    // Efficiency 
    //------------------------------------------------------------- 
    if ( !S_eff.isEmpty() ) { 
      S_eff.execute(); 
    } 
    eff = effBase * s_eff + a_eff; 
    effChem = effChemBase * s_effChem + a_effChem; 
     
    //-------------------------------------------------------------- 
    // Burn 
    //-------------------------------------------------------------- 
    Fl_Ocomb.burn( "Fu_I", eff ); 
     
    //-------------------------------------------------------------- 
    // if inputting a PW type of efficiency adjust the temperature 
    //-------------------------------------------------------------- 
    if ( effChem < 1.0 ) { 
      TtCombOutTemp = effChem *( Fl_Ocomb.Tt - Fl_Icomb.Tt ) + 
 Fl_Icomb.Tt; 
      Fl_Ocomb.setTotalTP( TtCombOutTemp, Fl_Icomb.Pt ); // use Pin 
    } 
     
  } 
   
  void calcRayleighLoss() { 
     
    flagRayleighChoked = 0; 
    flagRayleighLossTooMuch = 0; 
     
    PqPRayleigh = 1.0; 
    PqPRayleighError = 0.0; 
     
  
    //------------------------------------------------------------------ 
    // self-convergent iteration loop for internal momentum pressure drop calc       
    //------------------------------------------------------------------ 
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    for( countRayleigh=0; countRayleigh<=countRayleighMax; 
  countRayleigh++) { 
       
       
      //---------------------------------------------------------------- 
      // input or output dPqPRayleigh 
      //---------------------------------------------------------------- 
      if( switchHotLoss == "INPUT" ) { 
 PqPRayleigh = 1.0 - dPqPRayleigh; 
      } 
      else if( switchHotLoss == "CALCULATE" ) { 
 dPqPRayleigh = 1.0 - PqPRayleigh; 
      } 
       
       
      //---------------------------------------------------------------- 
      // calculate momentum pressure drop 
      //---------------------------------------------------------------- 
      real PtCombOut = PqPRayleigh * Fl_Icomb.Pt; 
       
      Fl_Ocomb.setTotal_hP( Fl_Ocomb.ht, PtCombOut ); 
       
       
      //---------------------------------------------------------------- 
      // Check momentum pressure drop 
      //---------------------------------------------------------------- 
      PqPRayleighNew = PqPRayleigh; 
  
      if ( switchHotLoss == "CALCULATE" ) { 
  
  
 //------------------------------------------------------------- 
 // make this thing a constant area burner 
 //------------------------------------------------------------- 
 Fl_Ocomb.A = Fl_Icomb.A; 
 flagRayleighChoked = 0; 
 if( Fl_Ocomb.MN > 1.0 ) { 
   // when MN > 1.0 FlowStation static calc is  
   //                        not consistent with Area 
   //        Fl_Ocomb.MN = 1.0;  
   // do not do this - creates major iteration problems 
   flagRayleighChoked = 1; 
  



 

114 

 

  
 //-------------------------------------------------------------- 
 // Calculate the exit static pressure from the momentum equation 
 // assume the fuel has the same velocity as the entrance flow 
 //-------------------------------------------------------------- 
 real PsMomMeth1; 
 PsMomMeth1 = Fl_Icomb.W*Fl_Icomb.V - Fl_Ocomb.W*Fl_Ocomb.V; 
 PsMomMeth1 = PsMomMeth1/C_GRAVITY; 
 PsMomMeth1 = PsMomMeth1 + Fl_Icomb.Ps * Fl_Icomb.A; 
 PsMomMeth1 = PsMomMeth1/Fl_Ocomb.A; 
 real PsMomMeth2; 
 //PsMomMeth2 = Fl_Ocomb.W*Fl_Icomb.V; 
 PsMomMeth2 = Fl_Icomb.W*Fl_Icomb.V + Wfuel*Fl_Icomb.V*fuelFractV; 
 PsMomMeth2 = PsMomMeth2/C_GRAVITY; 
 PsMomMeth2 = PsMomMeth2 + Fl_Icomb.Ps * Fl_Icomb.A; 
 PsMomMeth2 = PsMomMeth2/Fl_Ocomb.A; 
 PsMomMeth2 = 
   PsMomMeth2/(1.0+Fl_Ocomb.gams*Fl_Ocomb.MN*Fl_Ocomb.MN); 
 //PsMomMeth1 = PsMonMeth2; 
    
 //------------------------------------------------------------- 
 // Note Meth1 = Meth2 when MN <= 1.0 
 // Use Meth2 - seems more stable the Meth1 when MN > 1.0 
 //-------------------------------------------------------------- 
 PqPRayleighNew = (PsMomMeth2/Fl_Ocomb.Ps) * PqPRayleigh; 
      } 
       
      // Check against tolerance 
      PqPRayleighError = PqPRayleighNew - PqPRayleigh; 
      if( abs(PqPRayleighError) < tolRayleigh ) { break; } 
       
      // Bounding of PqPRayleigh movement to PqPRayleighStep 
      real sign; 
      sign = PqPRayleighError/abs(PqPRayleighError); 
      PqPRayleighDelta = sign * 
 min(abs(PqPRayleighError),PqPRayleighStep); 
      PqPRayleighNew = PqPRayleigh + PqPRayleighDelta; 
       
      // Lower limit of PqPRayleigh - limit too much loss to PqPRayleighMin 
      if( PqPRayleighNew < PqPRayleighMin ) { 
 if( flagRayleighLossTooMuch == 1 ) { 
   ESOreport( 1023901,"Rayleigh pressure loss limited, too much loss", FALSE ); 
   break; 
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 } 
 PqPRayleighNew = PqPRayleighMin; 
 flagRayleighLossTooMuch = 1; 
      } 
      else { 
 flagRayleighLossTooMuch = 0; 
      } 
       
      /* 
      // debug info 
      cout << Fl_Ocomb.A << " "; 
      cout << Fl_Ocomb.MN << " "; 
      cout << Fl_Ocomb.Ps << " "; 
      cout << PsMomMeth1 << " "; 
      cout << PsMomMeth2 << " "; 
      cout << PqPRayleigh << " "; 
      cout << PqPRayleighNew << " "; 
      cout << endl; 
      */ 
       
  
      //--------------------------------------------------------------------- 
      // check for convergence 
      //--------------------------------------------------------------------- 
      if( countRayleigh >= countRayleighMax ) { 
 ESOreport( 1023901,"Rayleigh iteration failed to converge, counter exceed max", 
FALSE ); 
 break; 
      } 
  
      PqPRayleigh = PqPRayleighNew; 
       
    } 
     
    if( flagRayleighChoked == 1 ) { 
      ESOreport( 1023901,"Rayleigh Fl_Ocomb.MN exceed choked 
 condition", FALSE ); 
    } 
  } 
   
   
  void calculate() { 
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    //---------------------------------------------------------------- 
    // Preburning pressure loss 
    //---------------------------------------------------------------- 
    calcPreLoss();  // creates Fl_Icomb, applies pre-losses 
     
    real FARin = Fl_Icomb.FAR; 
    real WARin = Fl_Icomb.WAR; 
 
    //------Added 6 Feb 2007 - IA---------------- 
    if (Fl_I.MN == 0. && Fl_I.Aphy == 0.){ 
     Fl_Icomb.MN = 0.4; 
     Fl_Icomb.setTotal_hP(Fl_Icomb.ht, Fl_Icomb.Pt); 
    }     
    //------End Additions 6 Feb 2007 
     
    //---------------------------------------------------------------- 
    // Pre-calculate Burning to obtain enthalpy, burned fuel attrib. 
    //---------------------------------------------------------------- 
    if ( switchBurn == "FAR" ) {  
      //-------------------------------------------------------------- 
      // determine the fuel weight flow from the input FAR 
      //-------------------------------------------------------------- 
      Wfuel = ( Fl_Icomb.W /( 1. + FARin + WARin))*( FAR - FARin ); 
      Fu_I.Wfuel =  Wfuel; 
      eqRatio = FAR/Fu_I.FARst; // Added 5 Feb 2007 - IA 
       
      calcBurn(); 
      calcRayleighLoss(); 
       
      TtCombOut = Fl_Ocomb.Tt; 
       
    } 
    //############################################################# 
    // Added 5 February 2007 - IA 
    // do an equivalence ratio calculation 
    else if (switchBurn == "EQRATIO") { 
     FAR = eqRatio*Fu_I.FARst; 
     Wfuel = ( Fl_Icomb.W /( 1. + FARin + WARin))*( FAR - FARin );  
     Fu_I.Wfuel =  Wfuel; 
       
     calcBurn(); 
     calcRayleighLoss(); 
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     TtCombOut = Fl_Ocomb.Tt; 
    } 
     
    //-------------------------------------------------------------- 
    //make a flow station that has properties of cold vitiated air... 
    //-------------------------------------------------------------- 
    Fl_Vit.copyFlowStatic("Fl_Ocomb");  
    Fl_Vit.setTotalTP(Fl_Icomb.Tt, Fl_Icomb.Pt); 
     
    //------------------------------------------------------------- 
    // copy inlet flow for pure air reference to be used later 
    //------------------------------------------------------------- 
    //Take a snapshot of air after it has entered the detonation tubes 
    Fl_IcombAir.copyFlowStatic("Fl_Icomb");  
   
    // Copy input flow properties for internal bypass flow  
    // - W set later 
    Fl_O2.copyFlow("Fl_IcombAir");  
     
    //---------------------------------------------------------------- 
    // On-design loop  
    //---------------------------------------------------------------- 
    if (switchDes == "DESIGN"){ 
         
        //----------------------------------------------------- 
 //  Initialize iterated variables 
 //----------------------------------------------------- 
 real uCJ, a_1, rhoVit, freq, PcqPi, errors; 
 real gamt, Cpt, beta, MCJ2, PcqPi2;  // average (static gamma, Cp) 
 real Atube, Vtube;//, mCycle, Wtube; 
 real MFP, Wvalve, gma_I; 
 real mFillAir, mPurgeAir, mPureAir; //tauVO, WvalveOpen, 
 real tDetonation, tDetProp, tBlowdown, tPurge, tFill, iVel; 
 real gam_s, gmm_fc;//, a_inlet; 
 real WtotAir,  Wbypass; 
  
 int count; 
  
 //---- initiated but not iterated ------------------------------- 
 //static density of cool vitiated fluid 
 rhoVit = Fl_Vit.rhot; //(lbm/ft^3)  
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 // speed of sound in pure air, stagnated in detonation tube 
 // that the detonation wave propogates in to 
 a_1 = sqrt(Fl_Icomb.gamt*Fl_Icomb.Rt*Fl_Icomb.Tt*25037.);   
      
  
 // ========================================================= 
 // Calculate Chapman-Jouguet Mach number for wave as described 
 //  in Heiser and Pratt 
 //========================================================= 
 //*** input variables:  // 
 //*** output variables: //MCJ, deltaS, qadd // 
 //*** Flow Stations:    //Fl_Ocomb, Fl_Icomb // 
 // local variables:     //gamt, Cpt, qadd, beta, MCJ2 //  
  
 //------ Arithmetically average specific heats -------------------- 
 gamt = (Fl_Ocomb.gamt + Fl_Icomb.gamt)/2.0;  // arithmetic mean of  
    // gamma for stopped  
    // fluid 
 Cpt = (Fl_Ocomb.Cpt + Fl_Icomb.Cpt)/2.0; // arithmetic mean of Cp 
      // for a stopped fluid 
  
 //----- Calculate heat addition per Heiser-Pratt cycle ------------ 
 // calculate non-dimensional heat addition 
 qadd = (Fl_Ocomb.ht - Fl_Icomb.ht)/(Cpt*Fl_Icomb.Tt);  
  
 //------- Calculate Chapman-Jouget Mach number -------------------- 
 beta = (gamt + 1.0)*qadd+1.0; 
 MCJ2 = beta + sqrt( beta**2 - 1.0 ); 
 MCJ = sqrt(MCJ2); 
  
 //--------- Calculate Entropy gain based on CJ detonation ---------- 
 deltaS = Cpt*(-log(MCJ2*((gamt+1.0)/ 
  (1.0+gamt*MCJ2))**((gamt+1.0)/gamt)) ); 
  
 //---- calculate the pressure rise using the H &P method ------ 
 PcqPi = (1.0+ gamt*MCJ2)/(gamt+1.0); 
 uCJ = a_1*MCJ; 
  
  
 //------ Calculate tube volume and Area ------------------- 
 Atube = (PI/4.)*dTube**2/144.; // ft^2 
 Vtube = Atube*(lTube/12); // ft^3 
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 //------- calculate the valve inlet mass flow rate ----------  
 gma_I=Fl_IcombAir.gamt; 
 MFP = Mvalve*sqrt( (gma_I*32.174)/(Fl_IcombAir.Rt*778.16) ) 
  *(1.+(gma_I-1.)/2.*Mvalve**2)**( (gma_I+1.)/(2.*(1.-gma_I))); 
 Wvalve = (Fl_IcombAir.Pt/sqrt(Fl_IcombAir.Tt)) 
    *(Atube*144.*ARvalve)*MFP; 
  
 //---------------------------------------------------------------- 
 // On-Design: Calculate bypass ratio 
 //---------------------------------------------------------------- 
 //*** input Variables:  //dTube, lTube, n_tubes, fillFrac 
 //            // purgeFrac, 
 //*** iterated Variables // freq 
 //*** output Variables: // iBPR 
 //*** local variables:  //WfillAir, WpurgeAir, WpureAir, WtotAir  
 //                        Wbypass, WpurgeAir, Wvit, // 
 //*** Flow Stations:    // Fl_IcombAir, Fl_Icomb, Fl_Iprg, Fl_Vit, // 
  
 //------- Calculate the split and partition of flow ----------- 
 // amount of air that will be mixed with fuel - one tube 
 mFillAir = Vtube*(rhoVit*fillFrac)/(1.+FAR);  
  
 // amount of air that will purge during each cycle - one tube 
 mPurgeAir = Vtube*(Fl_IcombAir.rhos*purgeFrac);  
  
 // total air per cycle flowing though one tube 
 mPureAir =  mFillAir + mPurgeAir;    
  
 //---------------------------------------------------------------- 
 // Timing - calculate frequency - Do I need to put this at the end? 
 //---------------------------------------------------------------- 
 //*** input Variables: // DDT, tValve, Ltube, ff, pf, tCycle 
 //*** iterated Variables: // uCJ, PcqPi 
 //*** output Variables // tCycle, tauValveOpen, freq 
 //*** local variables: // tDetonation, tDetProp, tBlowdown, tPurge,  
 //                     // tFill  
 //----------------------------------------------------------------- 
  
  
 //---------------- Detonation time ----------------------- 
 // DetProp time is relatively independant of fill fraction... 
// tDetProp= lTube/(uCJ*12); 
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 //DDT is input, tDetonationPropogatio calcd (may need to iterate) 
// tDetonation = DDT + tDetProp;  
  
 //---------------- Blowdown time ------------------------ 
 // assume choked flow at tube exit and calculate blowdown based on  
 //  draw-down time of a pressurized tank calculated on pressure  
 //  differential 
// gam_s = Fl_IcombAir.gams; // larger gamma is more conservative 
// gmm_fc =  ((gam_s + 1.)/2.)**(-(gam_s+1.)/( 2.*(gam_s-1.)) ); // 
  
//####  tBlowdown: Use ~1/2 calcd pressure (to match experimental data) 
 // we'll use CJ det wave velocity as the speed of sound in the gas  
 //   since a cannot be directly calc'd 
 // note tBlowdown is proportional to tube length 
 // tauBlDn is proportional to tube length... 
// tBlowdown = (log(0.4*PcqPi)/gmm_fc)*(lTube/uCJ); 
  
 //---------------- Fill and Purge time -------------------- 
 // Use the choked flow at valve inlet and the mass flow rate as 
 // calculated outside the loop to calculate fill time (m/ mdot) 
// tPurge = tValve + mPurgeAir/Wvalve; //(s) 
// tFill = tValve + mFillAir/Wvalve; //(s) 
 //Improvement could be made by calculating vitiated air velocity... 
  
 //---------------- Cycle Time output calculation --------------      
// tCycle = tDetonation + tBlowdown + tPurge + tFill; 
// tauValveOpen = (tPurge+tFill)/tCycle; 
 freq = 1./tCycle;  //tCycle is user input 
//cout << "\n \n tDetonation, tBlowdown, tPurge, tFill PcqPi"<<" "<< tDetonation <<" 
"<< tBlowdown<<" "<< tPurge<<" "<< tFill<<"  freq" << 1/tCycle << " " << PcqPi << 
endl;  
  
 //-------------- Set total mass flow through tubes ------------- 
 WtotAir = mPureAir*n_tubes*freq;    
 // steady-state flow rate into tubes 
  
 // conservation of mass check 
 if (WtotAir > Fl_I.W) { 
   
  fillFrac = fillFrac*(Fl_I.W/WtotAir); 
  purgeFrac = purgeFrac*(Fl_I.W/WtotAir); 
   
  mFillAir = Vtube*(rhoVit*fillFrac)/(1.+FAR);  
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  // amount of air that will be mixed with fuel - 1 tube 
   
  mPurgeAir = Vtube*(Fl_IcombAir.rhos*purgeFrac);  
  // amount of air that will purge during each cycle -1 tube 
   
  mPureAir =  mFillAir + mPurgeAir;    
  // total air per cycle flowing though one tube 
   
  WtotAir = Fl_I.W; 
//  cerr << "ATTENTION !pf & ff changed to: " << purgeFrac << "  " << 
fillFrac << endl; 
   
  ESOreport( 2222100,"Purge and fill fractions changed in order to maintain 
conservation of mass through the engine", FALSE ); 
  //break; 
  
 } 
  
 //--------------- Set iBPR ------------------------------ 
        Wbypass = (Fl_I.W - WtotAir)*flowby;   
        // steady-state flow rate sent to bypass 
         
        iBPR = Wbypass/WtotAir; 
        // steady-state internal PDC bypass ratio 
         
        iBPRdes = iBPR; 
         
        //------------ Set bypass exit flow  SPLIT ------------------- 
        Fl_O2.W = Wbypass; 
 Fl_O3.W = (Fl_I.W - WtotAir)-((Fl_I.W-WtotAir)*flowby); 
         
        //--------- Set purge and fill stations  PARTITION --------- 
        Fl_Iprg.copyFlowStatic("Fl_IcombAir");  
        // copy flow for purge function 
         
        // -------------  PURGE AIR ------------------- 
        Fl_Iprg.AphyDes  = (Atube*144)*n_tubes;  //Set physical area 
        Fl_Iprg.W = mPurgeAir*freq*n_tubes;   // set mass flow rate 
         
       // --------------- FILL AIR -------------------- 
        Fl_Icomb.copyFlow("Fl_IcombAir"); 
        Fl_Icomb.AphyDes  = Atube*144.*n_tubes*tauValveOpen;   
        // Actual area is  multiplied by tauVO to get equivalent  
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        //  area. - Fluid flows steadily through this area  
         
        Fl_Icomb.W = mFillAir*n_tubes*freq; //  
        Fl_Icomb.setTotal_hP(Fl_IcombAir.ht, Fl_IcombAir.Pt);  
        //sets time-averaged static conditions 
         
        //------------------------------------------------------------ 
        // Burning 
        //------------------------------------------------------------ 
        // FAR was calculated prior to enteringh this convergence loop - 
        // so we just need to modify Wfuel based on changed Fl_Icomb.W 
        Wfuel = ( Fl_Icomb.W /( 1. + FARin + WARin))*( FAR - FARin ); 
        Fu_I.Wfuel =  Wfuel; 
         
        calcBurn(); 
        calcRayleighLoss(); 
         
        TtCombOut = Fl_Ocomb.Tt; 
         
        //========================================================== 
        // Apply Dyer-Kaemming correction to obtain tube flow at exit 
        // (ignores the kinetic energy of the shock wave.) 
        //========================================================== 
        Fl_Ocomb.setTotal_hS(Fl_Ocomb.ht, Fl_Icomb.S+deltaS); 
         
    } 
     
    // OFF-DESIGN CODE //added Dec 09 - CT 
        if (switchDes == "OFFDESIGN"){ 
         
        //----------------------------------------------------- 
 //  Initialize iterated variables 
 //----------------------------------------------------- 
 //real uCJ, a_1, rhoVit, freq, PcqPi, errors; 
 //real gamt, Cpt, beta, MCJ2, PcqPi2;  // average (static gamma, Cp) 
 //real Atube, Vtube;//, mCycle, Wtube; 
 //real MFP, Wvalve, gma_I; 
 //real mFillAir, mPurgeAir, mPureAir; //tauVO, WvalveOpen, 
 //real tDetonation, tDetProp, tBlowdown, tPurge, tFill, iVel; 
 //real gam_s, gmm_fc;//, a_inlet; 
 //real WtotAir,  Wbypass; 
  
 //int count; 
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 //---- initiated but not iterated ------------------------------- 
 //static density of cool vitiated fluid 
 rhoVit = Fl_Vit.rhot; //(lbm/ft^3)  
  
 // speed of sound in pure air, stagnated in detonation tube 
 // that the detonation wave propogates in to 
 a_1 = sqrt(Fl_Icomb.gamt*Fl_Icomb.Rt*Fl_Icomb.Tt*25037.);   
      
  
 // ========================================================= 
 // Calculate Chapman-Jouguet Mach number for wave as described 
 //  in Heiser and Pratt 
 //=========================================================
= 
 //*** input variables:  // 
 //*** output variables: //MCJ, deltaS, qadd // 
 //*** Flow Stations:    //Fl_Ocomb, Fl_Icomb // 
 // local variables:     //gamt, Cpt, qadd, beta, MCJ2 //  
  
 //------ Arithmetically average specific heats -------------------- 
 gamt = (Fl_Ocomb.gamt + Fl_Icomb.gamt)/2.0;  // arithmetic mean of  
    // gamma for stopped  
    // fluid 
 Cpt = (Fl_Ocomb.Cpt + Fl_Icomb.Cpt)/2.0; // arithmetic mean of Cp 
      // for a stopped fluid 
  
 //----- Calculate heat addition per Heiser-Pratt cycle ------------ 
 // calculate non-dimensional heat addition 
 qadd = (Fl_Ocomb.ht - Fl_Icomb.ht)/(Cpt*Fl_Icomb.Tt);  
  
 //------- Calculate Chapman-Jouget Mach number -------------------- 
 beta = (gamt + 1.0)*qadd+1.0; 
 MCJ2 = beta + sqrt( beta**2 - 1.0 ); 
 MCJ = sqrt(MCJ2); 
  
 //--------- Calculate Entropy gain based on CJ detonation ---------- 
 deltaS = Cpt*(-log(MCJ2*((gamt+1.0)/ 
  (1.0+gamt*MCJ2))**((gamt+1.0)/gamt)) ); 
  
 //---- calculate the pressure rise using the H &P method ------ 
 PcqPi = (1.0+ gamt*MCJ2)/(gamt+1.0); 
 uCJ = a_1*MCJ; 
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 //------ Calculate tube volume and Area ------------------- 
 Atube = (PI/4.)*dTube**2/144.; // ft^2 
 Vtube = Atube*(lTube/12); // ft^3 
  
 //------- calculate the valve inlet mass flow rate ----------  
 gma_I=Fl_IcombAir.gamt; 
 MFP = Mvalve*sqrt( (gma_I*32.174)/(Fl_IcombAir.Rt*778.16) ) 
  *(1.+(gma_I-1.)/2.*Mvalve**2)**( (gma_I+1.)/(2.*(1.-gma_I))); 
 Wvalve = (Fl_IcombAir.Pt/sqrt(Fl_IcombAir.Tt)) 
    *(Atube*144.*ARvalve)*MFP; 
  
 //---------------------------------------------------------------- 
 // OFF-Design: Calculate bypass ratio 
 //---------------------------------------------------------------- 
 //*** input Variables:  //dTube, lTube, n_tubes, fillFrac 
 //            // purgeFrac, 
 //*** iterated Variables // freq 
 //*** output Variables: // iBPR 
 //*** local variables:  //WfillAir, WpurgeAir, WpureAir, WtotAir  
 //                        Wbypass, WpurgeAir, Wvit, // 
 //*** Flow Stations:    // Fl_IcombAir, Fl_Icomb, Fl_Iprg, Fl_Vit, // 
  
 //------- Calculate the split and partition of flow ----------- 
 // amount of air that will be mixed with fuel - one tube 
 mFillAir = Vtube*(rhoVit*fillFrac)/(1.+FAR);  
  
 // amount of air that will purge during each cycle - one tube 
 mPurgeAir = Vtube*(Fl_IcombAir.rhos*purgeFrac);  
  
 // total air per cycle flowing though one tube 
 mPureAir =  mFillAir + mPurgeAir;    
  
 //---------------------------------------------------------------- 
 // Timing - calculate frequency – Not used for Thorn thesis, frequency is input 
 //---------------------------------------------------------------- 
 //*** input Variables: // DDT, tValve, Ltube, ff, pf, tCycle 
 //*** iterated Variables: // uCJ, PcqPi 
 //*** output Variables // tCycle, tauValveOpen, freq 
 //*** local variables: // tDetonation, tDetProp, tBlowdown, tPurge,  
 //                     // tFill  
 //----------------------------------------------------------------- 
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 //---------------- Detonation time ----------------------- 
 // DetProp time is relatively independant of fill fraction... 
// tDetProp= lTube/(uCJ*12); 
  
 //DDT is input, tDetonationPropogatio calcd (may need to iterate) 
// tDetonation = DDT + tDetProp;  
  
 //---------------- Blowdown time ------------------------ 
 // assume choked flow at tube exit and calculate blowdown based on  
 //  draw-down time of a pressurized tank calculated on pressure  
 //  differential 
// gam_s = Fl_IcombAir.gams; // larger gamma is more conservative 
// gmm_fc =  ((gam_s + 1.)/2.)**(-(gam_s+1.)/( 2.*(gam_s-1.)) ); // 
  
//####  tBlowdown: Use ~1/2 calcd pressure (to match experimental data) 
 // we'll use CJ det wave velocity as the speed of sound in the gas  
 //   since a cannot be directly calc'd 
 // note tBlowdown is proportional to tube length 
 // tauBlDn is proportional to tube length... 
// tBlowdown = (log(0.4*PcqPi)/gmm_fc)*(lTube/uCJ); 
  
 //---------------- Fill and Purge time -------------------- 
 // Use the choked flow at valve inlet and the mass flow rate as 
 // calculated outside the loop to calculate fill time (m/ mdot) 
// tPurge = tValve + mPurgeAir/Wvalve; //(s) 
// tFill = tValve + mFillAir/Wvalve; //(s) 
 //Improvement could be made by calculating vitiated air velocity... 
  
 //---------------- Cycle Time output calculation --------------      
// tCycle = tDetonation + tBlowdown + tPurge + tFill; 
// tauValveOpen = (tPurge+tFill)/tCycle; 
  
 freq = 1./tCycle;  //frequency is input (Thorn thesis) 
                     
    
       
//cout << "\n \n tDetonation, tBlowdown, tPurge, tFill PcqPi"<<" "<< tDetonation <<" 
"<< tBlowdown<<" "<< tPurge<<" "<< tFill<<"  freq" << 1/tCycle << " " << PcqPi << 
endl;  
  
 //-------------- Set total mass flow through tubes ------------- 
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 WtotAir = mPureAir*n_tubes*freq;   
 
  
 
 // steady-state flow rate into tubes 
  
 // conservation of mass check 
  
 if (WtotAir > Fl_I.W) { 
   
  fillFrac = fillFrac*(Fl_I.W/WtotAir); 
  purgeFrac = purgeFrac*(Fl_I.W/WtotAir); 
   
  mFillAir = Vtube*(rhoVit*fillFrac)/(1.+FAR);  
  // amount of air that will be mixed with fuel - 1 tube 
   
  mPurgeAir = Vtube*(Fl_IcombAir.rhos*purgeFrac);  
  // amount of air that will purge during each cycle -1 tube 
   
  mPureAir =  mFillAir + mPurgeAir;    
  // total air per cycle flowing though one tube 
   
  WtotAir = Fl_I.W; 
//  cerr << "ATTENTION !pf & ff changed to: " << purgeFrac << "  " << 
fillFrac << endl; 
   
  ESOreport( 2222100,"Purge and fill fractions changed in order to maintain 
conservation of mass through the engine", FALSE ); 
  //break; 
  
 } 
  
 //--------------- Set iBPR ------------------------------ 
        Wbypass = (Fl_I.W - WtotAir)*flowby;   
        // steady-state flow rate sent to bypass 
         
        iBPR = Wbypass/WtotAir; 
        // steady-state internal PDC bypass ratio 
         
        //iBPRdes = iBPR; 
         
        //------------ Set bypass exit flow  SPLIT ------------------- 
        Fl_O2.W = Wbypass; 
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 Fl_O3.W = (Fl_I.W - WtotAir)-((Fl_I.W-WtotAir)*flowby); //bleed flow needed  
                                                                                                              //for static pressure 
                                                                                                              //of iBPR entering               
                                                                                                              // Mixer39 to equal  
                                                                                                             // static pressure         
                                                                                                             //entering from tubes 
        //--------- Set purge and fill stations  PARTITION --------- 
        Fl_Iprg.copyFlowStatic("Fl_IcombAir");  
        // copy flow for purge function 
         
        // -------------  PURGE AIR ------------------- 
        Fl_Iprg.AphyDes  = (Atube*144)*n_tubes;  //Set physical area 
        Fl_Iprg.W = mPurgeAir*freq*n_tubes;   // set mass flow rate 
         
       // --------------- FILL AIR -------------------- 
        Fl_Icomb.copyFlow("Fl_IcombAir"); 
        Fl_Icomb.AphyDes  = Atube*144.*n_tubes*tauValveOpen;   
        // Actual area is  multiplied by tauVO to get equivalent  
        //  area. - Fluid flows steadily through this area  
         
        Fl_Icomb.W = mFillAir*n_tubes*freq; //  
        Fl_Icomb.setTotal_hP(Fl_IcombAir.ht, Fl_IcombAir.Pt);  
        //sets time-averaged static conditions 
         
        //------------------------------------------------------------ 
        // Burning 
        //------------------------------------------------------------ 
        // FAR was calculated prior to enteringh this convergence loop - 
        // so we just need to modify Wfuel based on changed Fl_Icomb.W 
        Wfuel = ( Fl_Icomb.W /( 1. + FARin + WARin))*( FAR - FARin ); 
        Fu_I.Wfuel =  Wfuel; 
         
        calcBurn(); 
        calcRayleighLoss(); 
         
        TtCombOut = Fl_Ocomb.Tt; 
         
        //========================================================== 
        // Apply Dyer-Kaemming correction to obtain tube flow at exit 
        // (ignores the kinetic energy of the shock wave.) 
        //========================================================== 
        Fl_Ocomb.setTotal_hS(Fl_Ocomb.ht, Fl_Icomb.S+deltaS); 
     } 
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    //END OFF-DESIGN CODE 
    //----------------------------------------------------------------- 
    // Add split flows back to combusted flow 
    //----------------------------------------------------------------- 
    Fl_Ocomb.add("Fl_Iprg"); //add purge flow in (uncorrected) 
     
    //=========================================================== 
    // Apply corrections to the flow for transition to steady state... 
    // TTSS 
    //========================================================== 
    //*** local Variables: // Snew, Pnew 
    //*** Input Variables: // deltaS, TTSSeff, TTSSdPqP 
    //*** Flwo stations:   // Fl_Ocomb, Fl_Vit 
    real hnew, Pnew; // 
     
    //------ Calculate new Entropy and Pressure -------------- 
    //           eff = (dht)TTSF/(dht)comb + 1. 
    //        current h   - ( h gained)*(1.-eff) 
    hnew = Fl_Ocomb.ht - (Fl_Ocomb.ht - Fl_Icomb.ht)*(1.0-TTSSeff); 
    Pnew = Fl_Ocomb.Pt*(1.0-TTSSdPqP); 
     
    //End of 12Jan2007 additinos - IA 
    //########################################################### 
    Fl_O1.copyFlow( "Fl_Ocomb" ); 
     
    //------- update fluid properties based on new Entropy and Pressure 
    Fl_O1.setTotal_hP(hnew, Pnew); //added 12Jan2007 - IA 
     
     
    //----------------------------------------------------------------- 
    // Thermal storage calculations     
    //----------------------------------------------------------------- 
    if ( !S_Qhx.isEmpty() ) { 
      S_Qhx.execute(); 
    } 
    real hout = Fl_O1.ht  - Qhx / Fl_O1.W; 
    Fl_O1.setTotal_hP( hout, Fl_O1.Pt );  
     
     
    //------------------------------------------------------------ 
    // store the design value of FAR for use in guessing 
    //------------------------------------------------------------ 
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    if ( switchDes == "DESIGN" ) { 
      FARDes = FAR; 
    } 
     
  } 
 
  //------------------------------------------------------------ 
  // register the appropriate errors at build time 
  //------------------------------------------------------------ 
  void VCinit() 
  { 
    ESOregCreate( 1023901, 8, "", TRUE, FALSE, TRUE ); // provisional 
    ESOregCreate( 1093901, 8, "", TRUE, FALSE, TRUE ); // provisional 
    ESOregCreate( 2222100, 2, "", TRUE, FALSE, TRUE ); // provisional 
  } 
   
  } 
   
#endif 
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	Appendix B. Model File for Baseline Turbofan Engine
	//
	//--------------------------------------------------------------------
	//   T U R B O J E T   E N G I N E   B U I L D                       |
	//                                                                   |
	//   B U I L D   A N D   V E R I F Y   T U R B O J E T               |
	//                                                                   |
	//   D E S I G N    P O I N T    O N L Y                             |
	//                                                                   |
	//-------------------------------------------------------------------
	//   T U R B O J E T   C O N F I G U R A T I O N
	//-------------------------------------------------------------------
	cout << "\t------------------------------------------------------\n"
	<< "\t  Baseline High Bypass Turbofan built to match AEDsys  \n"
	<< "\t------------------------------------------------------\n\n";
	// Set model name
	MODELNAME = "Baseline HBTF CmpareAEDsys.mdl with mixers";
	//--------------------------------------------------------
	// set the thermo package
	//--------------------------------------------------------
	setThermoPackage("GasTbl");
	//   setThermoPackage("Janaf");
	//--------------------------------------------------------
	// include the standard intepretted things
	//--------------------------------------------------------
	#include <InterpIncludes.ncp>
	#include "ncp.view"
	//#include "bleed_macros.fnc"
	//#include "NewDuct.int"
	//-----------------------------------------------------------------
	// #include the definition file for the user defined engine
	// performance component
	//-----------------------------------------------------------------
	#include "EngPerf.cmp" ;
	//--------------------------------------------------------
	// MODEL DEFINITION
	//--------------------------------------------------------
	// #################### FLIGHT CONDITIONS #####################
	Element FlightConditions AMBIENT {
	// Specify Design conditions
	alt = 0.0;    // design altitude (ft)
	MN = 0.01;  // design Mach number
	//  Ps = 14.696; // ambient pressure (psia)
	//  Ts = 59.0;  // ambient temperature (F)
	W = 1500.00;  // design mass flow (lbm/s)
	}
	//########################### Inlet ############################
	Element Inlet INLET {
	eRamBase = 0.995; //Ram Recovery Factor?
	}
	// ###################### Splitter ###############################
	Element Splitter SPLIT {
	BPR =  8.0;  // Bypass Ratio
	}
	// ##########################  FAN ###############################
	// here the fan represents the outer portion of the Low pressure
	// compressor spool
	Element Compressor Fan21 {
	// // use these lines if no compressor map is imlemented
	// effDes = 0.88042; //0.882886;
	// PRdes = 1.56;
	// use these lines if compressor map is used...
	#include "fan.map" ; //Compressor sub-element map
	S_map.effDes = 0.8827; //0.88289;
	S_map.PRdes = 1.56;
	}
	// ##################### Bypass Duct/ Nozzle/ Sink ###################
	Element Duct Bypass13 {
	// AEDsys assumes flow in bypass duct is isentropic
	// dPqPbase = 0.015;// pressure loss through the bypass duct
	}
	Element Nozzle Noz18 {
	// Cfg = 0.995;
	dPqP = 1.0-0.98; // pressure loss from nozzle inlet to throat
	PsExhName = "AMBIENT.Fl_O.Ps";
	// AEDsys uses a fixed convergent nozzle for bypass exit
	switchType = "CONIC";
	}
	Element FlowEnd NozSink19 {
	}
	// ################ Low Pressure Compressor ###########################
	Element Compressor LPC20 {
	// // use these lines if no compressor map is implemented
	// effDes = 0.88042; // set the design point isentropic efficiency
	// PRdes = 1.56;
	// use these lines if compressor map is used...
	#include "lpc.map";
	S_map.effDes = 0.8827;// set design point isentropic efficiency
	S_map.PRdes = 1.56;
	}
	// ###################### High Pressure Compressor ##################
	Element Compressor HPC25 {
	// // use these lines if no compressor map is implemented
	// effDes = 0.85755; // set the design point isentropic efficiency
	// PRdes = 16.66667;
	// use these lines if compressor map is used...
	#include "hpc.map" ; // Compressor sub element map
	S_map.effDes = 0.8573 ; // design point isentropic efficiency
	S_map.PRdes = 16.66667 ; // Set the pressure ratio at design
	}
	// #################   Bleed starting point   #########################
	Element Bleed BLD3 {
	// ========================= BLEEDS ==========================
	// Three Bleeds are taken off of the back side of the
	//  High pressure Compressor
	BleedOutPort BL_Cool_301 {
	fracW = 0.05;   // mass flow (5% for cooling turbine)
	}
	BleedOutPort BL_Cool_302 {
	fracW = 0.05; // mass flow (5% for cooling turbine)
	}
	BleedOutPort BL_Env_303 {
	fracW = 0.01; // mass flow fraction (1% bleed)
	}
	}
	// ############################ Fuel #############################
	Element FuelStart FUEL32{
	LHV = 18400;  // BTU/lbm - Lower Heating Value of the fuel -
	// default is 18400 BTU/lbm
	}
	// ############################## Burner #########################
	Element Burner BRN36{
	effBase = 0.995; // component efficiency
	dPqPBase = 1.0 - 0.96; //pi b = 1.0-(dP/P) pressure drop across burner
	// Change from burner default of FAR to TEMPERATURE
	switchBurn = TEMPERATURE;
	// Total temp. at exit (degrees Rankine) || not to be used with FAR
	TtCombOut = 2900.0;
	}
	// ########################## Bleed Mixer/IGV ###########################
	Element Bleed MIX40 {
	BleedInPort BlIn40{
	Pscale = 0.88;
	}
	}
	// ########################## HP Turbine ###########################
	Element Turbine HPT41 {
	#include "hpt.map";  //High Pressure Turbine Map
	S_map.effDes = 0.9057;//0.90555;0.91075;
	// InterStageBleedInPort BlIn41 {
	//  Pfract = 1;  //force the bleed to come in at enterance
	// }
	}
	// ########################## Bleed Mixer ###########################
	Element Bleed MIX44 {
	BleedInPort BlIn44{
	Pscale = 0.68;
	}
	// Fl_I1.MN = .29;
	// Bl_I1.Pscale = 0.92; // Scale pressure so that the pressure ratio across mixer = 1
	// Bl_I1.MN = 0.31;
	}
	// ########################## LP Turbine ###########################
	Element Turbine LPT45 {
	#include "lpt.map"  //Low Pressure Turbine Map
	S_map.effDes = 0.9084;//0.90836;0.90906;
	// InterStageBleedInPort BlIn44 {
	//  Pfract = 1.; // force bleed to come in at turbine entrance
	// }
	}
	// ######################### Nozzle #######################
	Element Nozzle Noz8 {
	//Cfg = 0.995;
	//Cv = 0.985;
	dPqP = 1.0-0.985;
	PsExhName = "AMBIENT.Fl_O.Ps";
	switchType = "CONIC"; // AEDsys uses a fixed convergent nozzle for core exit
	}
	// ########################## Terminate Flow ################
	Element FlowEnd Sink39 {
	// BleedInPort BlIn44{
	//  Pscale = 0.96;
	// }
	// sink for the environmental bleed...
	}
	Element FlowEnd NozSink9 {
	// sink for the core airflow
	}
	// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	// Put shafts in the model
	// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	//######################### Low-Pressure Shaft ################
	Element Shaft LPShf {
	ShaftInputPort LPC, FAN, LPT ;
	Nmech = 2000.0;
	inertia = 1.0; // inertia is only needed for transient analysis
	HPX = 0.0 ;// +131.; //+92.30; // Horsepower extracted from the shaft hp  ( = 325.7 kW)
	fracLoss = 1.0 - 0.99; // Fractional loss on positive port torque (1.0 - eta_m)
	}
	//######################### High Pressure Shaft ###################
	Element Shaft HPShf {
	ShaftInputPort HPT, HPC ;
	Nmech = 11000.0;
	inertia = 1.0;
	HPX = 143.178 ;//+372;// +415.;//  +400.0; // Horsepower extracted from the shaft hp  ( = 105.7 kW)/ eta m ( = 0.99)
	fracLoss = 1.0 - 0.99; // Fractional loss on positive port torque (1.0 - eta_m)
	//cout << inertia.unitsunits <<endl;
	//quit();
	}
	//######################## Engine Performance ######################
	Element EngPerf PERF{
	}
	//___________________________________________________________
	//                  Flow Connections                       //
	//                                                         //
	//        This is where the flow is defined for the engine //
	//_________________________________________________________//
	//
	//############# Ambient to Splitter #########################
	linkPorts( "AMBIENT.Fl_O",  "INLET.Fl_I",  "FL0" );
	linkPorts( "INLET.Fl_O",  "SPLIT.Fl_I",  "FL1" );
	//#############  Bypass air     #############################
	linkPorts( "SPLIT.Fl_02",  "Fan21.Fl_I",   "FLb2" );
	linkPorts( "Fan21.Fl_O",  "Bypass13.Fl_I",  "FLb3" );
	linkPorts( "Bypass13.Fl_O",  "Noz18.Fl_I",   "FLb7" );
	linkPorts( "Noz18.Fl_O",  "NozSink19.Fl_I",  "FLb8" );
	//############# Core Air Flow   #############################
	linkPorts( "SPLIT.Fl_01",  "LPC20.Fl_I",   "FL2" );
	linkPorts( "LPC20.Fl_O",  "HPC25.Fl_I",   "FL25" );
	linkPorts( "HPC25.Fl_O",  "BLD3.Fl_I",            "FL3" );
	linkPorts( "BLD3.Fl_O",         "BRN36.Fl_I",   "FL31" ) ;
	//##############   Fuel Flow   ##############################
	linkPorts( "FUEL32.Fu_O",  "BRN36.Fu_I",   "Fu3" );
	linkPorts( "BRN36.Fl_O",  "MIX40.Fl_I",   "FL4");
	linkPorts( "MIX40.Fl_O", "HPT41.Fl_I",   "FL41" );
	linkPorts( "HPT41.Fl_O",  "MIX44.Fl_I",   "FL44");
	linkPorts( "MIX44.Fl_O", "LPT45.Fl_I",   "FL45" );
	linkPorts( "LPT45.Fl_O",  "Noz8.Fl_I",   "FL7");
	linkPorts( "Noz8.Fl_O",  "NozSink9.Fl_I",  "FL8" );
	//############## Bleed port linkage ##########################
	//linkBleedCB("BLD3", "MIX40", 0.05, 1.0, 1.0, "BL 1");
	//linkBleedCB("BLD3", "MIX44", 0.05, 1.0, 1.0, "BL 2");
	//linkBleedCB("BLD3", "Sink39", 0.01, 1.0, 1.0, "BL 3");
	linkPorts( "BLD3.BL_Cool_301", "MIX40.BlIn40", "BL 1");
	linkPorts( "BLD3.BL_Cool_302", "MIX44.BlIn44", "BL 2");
	linkPorts( "BLD3.BL_Env_303", "Sink39.Fl_I", "BL 3");
	//$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
	//          Mechanical (Shaft) connections
	// $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
	//############### Low-Pressure Spool #######################
	linkPorts("LPC20.Sh_O", "LPShf.LPC", "LP1");
	linkPorts("LPT45.Sh_O", "LPShf.LPT",  "LP2");
	linkPorts("Fan21.Sh_O", "LPShf.FAN",  "LP3");
	//############## High-Pressure Spool #######################
	linkPorts("HPC25.Sh_O", "HPShf.HPC", "HP1");
	linkPorts("HPT41.Sh_O", "HPShf.HPT",  "HP2");
	// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
	//   Begin Run Definition
	// vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
	cout << "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n"
	<< "               Begin Run Input definitions     \n "
	<< "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv\n\n";
	Appendix C. Model File for Hybrid Turbofan Engine
	//
	//------------------------------------------------------------------------
	//   H Y B R I D   T U R B O F A N    E N G I N E   |
	//                                                                       |
	//-----------------------------------------------------------------------
	//     C O N F I G U R A T I O N
	//-----------------------------------------------------------------------
	cout << "\t-------------------------------------------------------------\n"
	<< "\t  Hybrid Pulsed Detonation Combustor High Bypass Turbofan ... \n"
	<< "\t-----------------------------------------------------------\n\n";
	// Set model name
	MODELNAME = "PDC HBTF"; //Pulsed Detonation Combustor High Bypass Turbofan";
	//--------------------------------------------------------
	// set the thermo package
	//--------------------------------------------------------
	setThermoPackage("GasTbl");
	// setThermoPackage("FPT");
	//--------------------------------------------------------
	// include the standard intepretted things
	//--------------------------------------------------------
	#include <InterpIncludes.ncp>
	#include "ncp.view"
	//-------------------------------------------------------------------
	// #include the definition file for the user defined engine
	// performance component
	//-------------------------------------------------------------------
	#include "EngPerf.cmp" ;
	//--------------------------------------------------------
	// MODEL DEFINITION
	//--------------------------------------------------------
	// #################### FLIGHT CONDITIONS #####################
	Element FlightConditions AMBIENT {
	// Specify Design conditions
	alt = 0.0;   // design altitude (ft)
	MN = 0.01;  // design Mach number
	//  Ps = 14.696; // ambient pressure (psia)
	//  Ts = 59.0; // ambient temperature (F)
	W = 1500.00;  // design mass flow (lbm/s)
	}
	//########################### Inlet ############################
	Element Inlet INLET {
	eRamBase = .995; //Ram Recovery Factor? //.995
	}
	// ###################### Splitter ###############################
	Element Splitter SPLIT {
	BPR =  8.0;  // Bypass Ratio
	}
	// ##########################  FAN ###############################
	// here the fan represents the outer portion of the Low pressure
	// compressor spool
	Element Compressor Fan21 {
	// // use these lines if no compressor map is imlemented
	// effDes = 0.88042; //0.882886;
	// PRdes = 1.56;
	// use these lines if compressor map is used...
	#include "fan.map" ; //Compressor sub-element map
	S_map.effDes = 0.8827; //0.88289;//.8827
	S_map.PRdes = 1.56;
	}
	// ##################### Bypass Duct/ Nozzle/ Sink ###################
	Element Duct Bypass13 {
	// AEDsys assumes flow in bypass duct is isentropic (p109, #9)
	// dPqPbase = 0.015; // pressure loss through the bypass duct
	}
	Element Nozzle Noz18 {
	// Cfg = 0.995;
	dPqP = 1.0-0.98;  // pressure loss from nozzle inlet to throat
	PsExhName = "AMBIENT.Fl_O.Ps";
	switchType = "CONIC"; // AEDsys uses a fixed convergent nozzle for bypass exit
	}
	Element FlowEnd NozSink19 {
	}
	// ################ Low Pressure Compressor ###########################
	Element Compressor LPC20 {
	// // use these lines if no compressor map is imlemented
	// effDes = 0.88042;  // set the design point isentropic efficiency
	// PRdes = 1.56;
	// use these lines if compressor map is used...
	#include "lpc.map";
	S_map.effDes = 0.8827; // 0.88289; set the design point isentropic
	//efficiency//.8827
	S_map.PRdes = 1.56;
	}
	// ###################### High Pressure Compressor ##################
	Element Compressor HPC25 {
	// // use these lines if no compressor map is imlemented
	// effDes = 0.85755; //0.8855338;  // set the design point isentropic efficiency
	// PRdes = 16.66667;
	// use these lines if compressor map is used...
	#include "hpc.map" ; // Compressor sub element map
	S_map.effDes = 0.8573 ; //0.857535 ; set the maps design point
	//isentropic efficiency//.8573
	S_map.PRdes = 16.66667 ; // Set the pressure ratio at design
	}
	// ######################   Bleed starting point   #########################
	Element Bleed BLD3 {
	// ============================ BLEEDS ============================
	// Three Bleeds are taken off of the back side of the High pressure Compressor
	BleedOutPort BL_Cool_301 {
	//fracBldWork = 1.0;  // work fraction where bleed is taken
	//fracBldP = 1.0;     // Pressure fraction where bleed is taken
	fracW = 0.05;    // mass flow (5% for cooling turbine)
	}
	BleedOutPort BL_Cool_302 {
	//fracBldWork = 1.0; // work fraction (dhb/dh)
	//fracBldP = 1.0;  // Pressure fraction (dPb/dP)
	fracW = 0.05; // mass flow (5% for cooling turbine)
	}
	BleedOutPort BL_Env_303 {
	//fracBldWork = 1.0; // (dhb/dh)  work fraction - closely tied with pressure fraction...
	//fracBldP = 1.0;  // Pressure Fraction (dPb/dP)
	fracW = 0.01; // mass flow fraction (1% bleed)
	}
	}
	// ############################ Fuel #############################
	Element FuelStart FUEL32{
	LHV = 18400;  // BTU/lbm - Lower Heating Value of the fuel -
	// default is 18400 BTU/lbm
	}
	// ############################## Burner #########################
	// Element Burner BRN36{
	//   effBase = 0.995; // component efficiency ... ??
	//   dPqPBase = 1.0 - 0.96; //0.04; // pi b - pressure drop across burner... ?? (dP/P)
	//
	//   switchBurn = TEMPERATURE; // Change from burner defauls using Fuel-air Ratio (FAR) to TEMPERATURE
	//   TtCombOut = 2900.0; // Total temperature at exit (degrees Rankine) || not to be used with FAR
	//
	//   // or use the default FAR and define what the FAR is...
	//   //  FAR = 0.02282;  // Fuel-to-Air ratio;  not to be used with TtCombOut, Wfuel, etc.
	//
	// }
	#include "PDC_burner_bleed.int"
	Element PulseDetonationCombustor BRN36{
	effBase = .995; // burning efficiency//.995
	dPqPBase = 1.0-0.96; // pressure loss across valves/through bypass
	switchBurn = FAR; // set fuel-air ratio (vs equivalence ratio)
	FAR = (0.0683 * 1.00); //approximately 85% of stoichiometric conditions
	purgeFrac = 0.2; // designate purge fraction
	fillFrac = 0.8;  // designate fill fraction
	lTube = 36;  // length of tube in inches
	n_tubes = 24;  // number of tubes
	dTube = 2.0;  // inside diameter of tubes
	tCycle = .016776271641; // cycle time
	flowby = 1;                      // percentage of internal bypass flow into mixer39
	}
	// ########################## Wall heat exchange ########################
	// *** not uses in the current model ***
	//Element Wall WALL38{
	// Ahx1 = PI*36; // area of wall inside PDT
	// Ahx2 = PI*36*1.02; // area that bypass flow sees
	// ChxDes1 = 0.7;// heat transfer film coefficient - blind guess...
	// ChxDes2 = 0.7;//
	// CpMat = 0.1481;//specific heat of material (titanium @ 2160 R)
	// //     # tubes  pi/4  length     oD    iD(in)        rho(lbm/ft^3) Titanium
	// massMat = 36.*(PI/4.*(36./12.)*(2.25**2-2.**2)/144.)*280.93;//mass of material in lbm
	//
	//}
	// ######################   Internal Bypass Bleed   #########################
	Element Bleed BLD4 {
	// ============================ BLEEDS ============================
	// Three Bleeds are taken from the internal bypass of the PDC
	BleedOutPort BL_Cool_304 {
	//fracBldWork = 1.0;  // work fraction where bleed is taken
	//fracBldP = 1.0;     // Pressure fraction where bleed is taken
	fracW = 0.499;    // mass flow (50% for cooling turbine)
	}
	BleedOutPort BL_Cool_305 {
	//fracBldWork = 1.0; // work fraction (dhb/dh)
	//fracBldP = 1.0;  // Pressure fraction (dPb/dP)
	fracW = 0.499; // mass flow (50% for cooling turbine)
	}
	}
	// ############# PDC bypass mixer/Transition to steady-state device #####
	Element Mixer MIX39{
	Fl_I1.MN = .95;  // Rather high MN, but it works where lower
	// values do not...
	}
	// ########################## Bleed Mixer/IGV ###########################
	Element Bleed MIX40 {
	BleedInPort BlIn40{
	Pscale = 0.88;
	}
	BleedInPort BlIn41{
	Pscale = .88;
	}
	}
	// ########################## HP Turbine ###########################
	Element Turbine HPT41 {
	#include "hpt.map";  //High Pressure Turbine Map
	S_map.effDes = 0.9057;//0.90555;0.91075;//.9057
	}
	// ########################## Bleed Mixer ###########################
	Element Bleed MIX44 {
	BleedInPort BlIn44{
	Pscale = 0.68;
	}
	BleedInPort BlIn45{
	Pscale = .68;
	}
	}
	// ########################## LP Turbine ###########################
	Element Turbine LPT45 {
	#include "lpt.map"  //Low Pressure Turbine Map
	S_map.effDes = 0.9084;//0.90836;0.90906;//.9084
	}
	// ######################### Nozzle #######################
	Element Nozzle Noz8 {
	//Cfg = 0.995;
	//Cv = 0.985;
	dPqP = 1.0-0.985; // pressure loss across the nozzle
	PsExhName = "AMBIENT.Fl_O.Ps";
	switchType = "CONIC"; // AEDsys uses a fixed convergent nozzle for core exit
	}
	// ########################## Terminate Flow ################
	Element FlowEnd Sink39 {
	// sink for the environmental bleed...
	}
	Element FlowEnd NozSink9 {
	// sink for the core airflow
	}
	Element FlowEnd NozSink1 {
	// sink for the ibypass bleed airflow
	}
	// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	// Put shafts in the model
	// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	//######################### Low-Pressure Shaft ################
	Element Shaft LPShf {
	ShaftInputPort LPC, FAN, LPT ;
	Nmech = 2000.0;
	inertia = 1.0; // inertia is only needed for transient analysis
	HPX = 0.0 ; //+92.30; // Horsepower extracted from the shaft hp  ( = 325.7 kW)
	fracLoss = 1.0-.99; // Fractional loss on positive port torque (1.0
	//- eta_m)1.0-.99
	}
	//######################### High Pressure Shaft ###################
	Element Shaft HPShf {
	ShaftInputPort HPT, HPC ;
	Nmech = 11000.0;
	inertia = 1.0;// inertia is only needed for transient analysis
	HPX = 143.178 ;//  +400.0; // Horsepower extracted from the shaft hp  ( = 105.7 kW)/ eta m ( = 0.99)
	fracLoss = 1.0 - .99; // Fractional loss on positive port torque (1.0 - eta_m)
	//1.0-.99
	}
	//######################## Engine Performance ######################
	Element EngPerf PERF{
	}
	//___________________________________________________________
	//                  Flow Connections                       //
	//                                                         //
	//        This is where the flow is defined for the engine //
	//_________________________________________________________//
	//
	//############# Ambient to Splitter #########################
	linkPorts( "AMBIENT.Fl_O",  "INLET.Fl_I",  "FL0" );
	linkPorts( "INLET.Fl_O",  "SPLIT.Fl_I",  "FL1" );
	//#############  Bypass air     #############################
	linkPorts( "SPLIT.Fl_02",  "Fan21.Fl_I",   "FLb2" );
	linkPorts( "Fan21.Fl_O",  "Bypass13.Fl_I",  "FLb3" );
	linkPorts( "Bypass13.Fl_O",  "Noz18.Fl_I",   "FLb7" );
	linkPorts( "Noz18.Fl_O",  "NozSink19.Fl_I",  "FLb8" );
	//############# Core Air Flow   #############################
	linkPorts( "SPLIT.Fl_01",  "LPC20.Fl_I",   "FL2" );
	linkPorts( "LPC20.Fl_O",  "HPC25.Fl_I",   "FL25" );
	linkPorts( "HPC25.Fl_O",  "BLD3.Fl_I",            "FL3" );
	linkPorts( "BLD3.Fl_O",         "BRN36.Fl_I",   "FL31" ) ;
	//##############   Fuel Flow   ##############################
	linkPorts( "FUEL32.Fu_O",  "BRN36.Fu_I",   "Fu3" );
	//linkPorts( "BRN36.Fl_O1",  "WALL38.Fl_I1",  "Wa1" );
	//linkPorts( "BRN36.Fl_O2",  "WALL38.Fl_I2",  "Wa2" );
	//linkPorts( "WALL38.Fl_O1", "MIX39.Fl_I1",  "Fl39");
	//linkPorts( "WALL38.Fl_O2", "MIX39.Fl_I2",  "Fl392");
	linkPorts( "BRN36.Fl_O1",  "MIX39.Fl_I1",  "Fl39");
	linkPorts( "BRN36.Fl_O2",  "MIX39.Fl_I2",  "Fl392");
	linkPorts( "BRN36.Fl_O3",  "BLD4.Fl_I",  "Fl393");
	linkPorts( "BLD4.Fl_O",  "NozSink1.Fl_I", "Fl394");
	linkPorts( "MIX39.Fl_O", "MIX40.Fl_I",   "FL4");
	linkPorts( "MIX40.Fl_O", "HPT41.Fl_I",   "FL41" );
	linkPorts( "HPT41.Fl_O",  "MIX44.Fl_I",   "FL44");
	linkPorts( "MIX44.Fl_O", "LPT45.Fl_I",   "FL45" );
	linkPorts( "LPT45.Fl_O",  "Noz8.Fl_I",   "FL7");
	linkPorts( "Noz8.Fl_O",  "NozSink9.Fl_I",  "FL8" );
	//############## Bleed port linkage ##########################
	linkPorts( "BLD3.BL_Cool_301", "MIX40.BlIn40", "BL 1");
	linkPorts( "BLD3.BL_Cool_302", "MIX44.BlIn44", "BL 2");
	linkPorts( "BLD3.BL_Env_303", "Sink39.Fl_I", "BL 3");
	linkPorts( "BLD4.BL_Cool_304", "MIX40.BlIn41", "BL 4");
	linkPorts( "BLD4.BL_Cool_305", "MIX44.BlIn45", "BL 5");
	//$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
	//          Mechanical (Shaft) connections
	// $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
	//############### Low-Pressure Spool #######################
	linkPorts("LPC20.Sh_O", "LPShf.LPC", "LP1");
	linkPorts("LPT45.Sh_O", "LPShf.LPT",  "LP2");
	linkPorts("Fan21.Sh_O", "LPShf.FAN",  "LP3");
	//############## High-Pressure Spool #######################
	linkPorts("HPC25.Sh_O", "HPShf.HPC", "HP1");
	linkPorts("HPT41.Sh_O", "HPShf.HPT",  "HP2");
	// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
	//   Begin Run Definition
	// vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
	cout << "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n"
	<< "               Begin Run Input definitions     \n "
	<< "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv\n\n";
	Vita

